Search results for: network technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11928

Search results for: network technology

7398 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 173
7397 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities

Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson

Abstract:

Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.

Keywords: education, facilities, learning-resources, technology-tools

Procedia PDF Downloads 29
7396 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies

Authors: Rade M. Ciric

Abstract:

The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.

Keywords: engineering education, power distribution network, syllabus implementation, outcome evaluation

Procedia PDF Downloads 407
7395 Information Technology Approaches to Literature Text Analysis

Authors: Ayse Tarhan, Mustafa Ilkan, Mohammad Karimzadeh

Abstract:

Science was considered as part of philosophy in ancient Greece. By the nineteenth century, it was understood that philosophy was very inclusive and that social and human sciences such as literature, history, and psychology should be separated and perceived as an autonomous branch of science. The computer was also first seen as a tool of mathematical science. Over time, computer science has grown by encompassing every area in which technology exists, and its growth compelled the division of computer science into different disciplines, just as philosophy had been divided into different branches of science. Now there is almost no branch of science in which computers are not used. One of the newer autonomous disciplines of computer science is digital humanities, and one of the areas of digital humanities is literature. The material of literature is words, and thanks to the software tools created using computer programming languages, data that a literature researcher would need months to complete, can be achieved quickly and objectively. In this article, three different tools that literary researchers can use in their work will be introduced. These studies were created with the computer programming languages Python and R and brought to the world of literature. The purpose of introducing the aforementioned studies is to set an example for the development of special tools or programs on Ottoman language and literature in the future and to support such initiatives. The first example to be introduced is the Stylometry tool developed with the R language. The other is The Metrical Tool, which is used to measure data in poems and was developed with Python. The latest literature analysis tool in this article is Voyant Tools, which is a multifunctional and easy-to-use tool.

Keywords: DH, literature, information technologies, stylometry, the metrical tool, voyant tools

Procedia PDF Downloads 156
7394 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: context, default, exception, vulnerability

Procedia PDF Downloads 261
7393 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance

Authors: Merertu Wakuma Rundassa

Abstract:

Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.

Keywords: information technology, business integrity, textile and apparel industries, Ethiopia

Procedia PDF Downloads 368
7392 Modelling and Control of Binary Distillation Column

Authors: Narava Manose

Abstract:

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.

Keywords: modelling, distillation column, control, binary distillation

Procedia PDF Downloads 282
7391 Approach for Updating a Digital Factory Model by Photogrammetry

Authors: R. Hellmuth, F. Wehner

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant. 

Keywords: digital factory model, photogrammetry, factory planning, restructuring

Procedia PDF Downloads 120
7390 Investigating the Determinants and Growth of Financial Technology Depth of Penetration among the Heterogeneous Africa Economies

Authors: Tochukwu Timothy Okoli, Devi Datt Tewari

Abstract:

The high rate of Fintech adoption has not transmitted to greater financial inclusion and development in Africa. This problem is attributed to poor Fintech diversification and usefulness in the continent. This concept is referred to as the Fintech depth of penetration in this study. The study, therefore, assessed its determinants and growth process in a panel of three emergings, twenty-four frontiers and five fragile African economies disaggregated with dummies over the period 2004-2018 to allow for heterogeneity between groups. The System Generalized Method of Moments (GMM) technique reveals that the average depth of Mobile banking and automated teller machine (ATM) is a dynamic heterogeneity process. Moreover, users' previous experiences/compatibility, trial-ability/income, and financial development were the major factors that raise its usefulness, whereas perceived risk, financial openness, and inflation rate significantly limit its usefulness. The growth rate of Mobile banking, ATM, and Internet banking in 2018 is, on average 41.82, 0.4, and 20.8 per cent respectively greater than its average rates in 2004. These greater averages after the 2009 financial crisis suggest that countries resort to Fintech as a risk-mitigating tool. This study, therefore, recommends greater Fintech diversification through improved literacy, institutional development, financial liberalization, and continuous innovation.

Keywords: depth of fintech, emerging Africa, financial technology, internet banking, mobile banking

Procedia PDF Downloads 132
7389 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms

Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani

Abstract:

Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.

Keywords: face recognition, body-worn cameras, deep learning, person identification

Procedia PDF Downloads 170
7388 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology

Procedia PDF Downloads 395
7387 Using Set Up Candid Clips as Viral Marketing via New Media

Authors: P. Suparada, D. Eakapotch

Abstract:

This research’s objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire from 50 random sampling representative samples and in-depth interview from experts in publicizing and advertising fields. The findings indicated the positive and negative effects to the brands’ image and presenters’ image of product named “Scotch 100” and “Snickers” that used set up candid clips via new media for publicizing and advertising in Thailand. It will be useful for fields of publicizing and advertising in the new media forms.

Keywords: candid clip, effect, new media, social network

Procedia PDF Downloads 225
7386 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System

Authors: Kenneth N. Ohei, Roelien Brink

Abstract:

For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.

Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0

Procedia PDF Downloads 161
7385 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases

Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar

Abstract:

Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.

Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases

Procedia PDF Downloads 160
7384 Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education

Authors: Anne Marie Morrin

Abstract:

This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).

Keywords: collaboration, transdisciplinary, STEAM, visual arts education

Procedia PDF Downloads 52
7383 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria

Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe

Abstract:

Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.

Keywords: data portal, data infrastructure, open source, sustainability

Procedia PDF Downloads 103
7382 The Need for a Consistent Regulatory Framework for CRISPR Gene-Editing in the European Union

Authors: Andrew Thayer, Courtney Rondeau, Paraskevi Papadopoulou

Abstract:

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-editing technologies have generated considerable discussion about the applications and ethics of their use. However, no consistent guidelines for using CRISPR technologies have been developed -nor common legislation passed related to gene editing, especially as it is connected to genetically modified organisms (GMOs) in the European Union. The recent announcement that the first babies with CRISPR-edited genes were born, along with new studies exploring CRISPR’s applications in treating thalassemia, sickle-cell anemia, cancer, and certain forms of blindness, have demonstrated that the technology is developing faster than the policies needed to control it. Therefore, it can be seen that a reasonable and coherent regulatory framework for the use of CRISPR in human somatic and germline cells is necessary to ensure the ethical use of the technology in future years. The European Union serves as a unique region of interconnected countries without a standard set of regulations or legislation for CRISPR gene-editing. We posit that the EU would serve as a suitable model in comparing the legislations of its affiliated countries in order to understand the practicality and effectiveness of adopting majority-approved practices. Additionally, we present a proposed set of guidelines which could serve as a basis in developing a consistent regulatory framework for the EU countries to implement but also act as a good example for other countries to adhere to. Finally, an additional, multidimensional framework of smart solutions is proposed with which all stakeholders are engaged to become better-informed citizens.

Keywords: CRISPR, ethics, regulatory framework, European legislation

Procedia PDF Downloads 139
7381 Techno-Apocalypse in Christian End-Time Literature

Authors: Sean O'Callaghan

Abstract:

Around 2011/2012, a whole new genre of Christian religious writing began to emerge, focused on the role of advanced technologies, particularly the GRIN technologies (Genetics, Robotics, Information Technology and Nanotechnology), in bringing about a techno-apocalypse, leading to catastrophic events which would usher in the end of the world. This genre, at first niche, has now begun to grow in significance in many quarters of the more fundamentalist and biblically literalist branches of evangelicalism. It approaches science and technology with more than extreme skepticism. It accuses transhumanists of being in league with satanic powers and a satanic agenda and contextualizes transhumanist scientific progress in terms of its service to what it believes to be a soon to come Antichrist figure. The genre has moved beyond literature and videos about its message can be found on YouTube and other forums, where many of the presentations there get well over a quarter of a million views. This paper will examine the genre and its genesis, referring to the key figures involved in spreading the anti-intellectualist and anti-scientific message. It will demonstrate how this genre of writing is similar in many respects to other forms of apocalyptic writing which have emerged in the twentieth and twenty-first centuries, all in response to both scientific and political events which are interpreted in the light of biblical prophecy. It will also set the genre in the context of a contemporary pre-occupation with conspiracy theory. The conclusions of the research conducted in this field by the author are that it does a grave disservice to both the scientific and Christian audiences which it targets, by misrepresenting scientific advances and by creating a hermeneutic of suspicion which makes it impossible for Christians to place their trust in scientific claims.

Keywords: antichrist, catastrophic, Christian, techno-apocalypse

Procedia PDF Downloads 212
7380 Social Networks as a Tool for Sports Marketing

Authors: Márcia Aparecida Teixeira

Abstract:

Sports, in particular football, boosts considerably the financial market of a certain locality, be it city or even a country. The financial transactions involving this medium stand out from other existing businesses, such as small industries. Strategically, social networks are inserted in this sporting environment, in order to promote and attract new fans of this modality. The present study analyzes the use of social networks in Sports Marketing with a focus on football. For the object of this study, it was chosen a specific club, the Club Atlético Mineiro, a Brazilian club of great national notoriety. The social networks on focus will be: Facebook, Twitter, and Instagram. It will be analyzed the content and frequency of the posts, reception of the target public in relation to the content made available and its feedback.

Keywords: social network, sport, strategy, marketing

Procedia PDF Downloads 392
7379 The Magnitude Scale Evaluation of Cross-Platform Internet Public Opinion

Authors: Yi Wang, Xun Liang

Abstract:

This paper introduces a model of internet public opinion waves, which describes the message propagation and measures the influence of a detected event. We collect data on public opinion propagation from different platforms on the internet, including micro-blogs and news. Then, we compare the spread of public opinion to the seismic waves and correspondently define the P-wave and S-wave and other essential attributes and characteristics in the process. Further, a model is established to evaluate the magnitude scale of the events. In the end, a practical example is used to analyze the influence of network public opinion and test the reasonability and effectiveness of the proposed model.

Keywords: internet public opinion waves (IPOW), magnitude scale, cross-platform, information propagation

Procedia PDF Downloads 291
7378 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum

Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau

Abstract:

Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).

Keywords: thermography, orofacial biomechanics, skin temperature, ice therapy

Procedia PDF Downloads 262
7377 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 121
7376 Social Data Aggregator and Locator of Knowledge (STALK)

Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat

Abstract:

Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.

Keywords: social network, analysis, Facebook, Linkedin, git, big data

Procedia PDF Downloads 446
7375 Bread-Making Properties of Rice Flour Dough Using Fatty Acid Salt

Authors: T. Hamaishi, Y. Morinaga, H. Morita

Abstract:

Introduction: Rice consumption in Japan has decreased, and Japanese government has recommended use of rice flour in order to expand the consumption of rice. There are two major protein components present in flour, called gliadin and glutenin. Gluten forms when water is added to flour and is mixed. As mixing continues, glutenin interacts with gliadin to form viscoelastic matrix of gluten. Rice flour bread does not expand as much as wheat flour bread. Because rice flour is not included gluten, it cannot construct gluten network in the dough. In recent years, some food additives have been used for dough-improving agent in bread making, especially surfactants has effect in order to improve dough extensibility. Therefore, we focused to fatty acid salt which is one of anionic surfactants. Fatty acid salt is a salt consist of fatty acid and alkali, it is main components of soap. According to JECFA(FAO/WHO Joint Expert Committee on Food Additives), salts of Myristic(C14), Palmitic(C16) and Stearic(C18) could be used as food additive. They have been evaluated ADI was not specified. In this study, we investigated to improving bread-making properties of rice flour dough adding fatty acid salt. Materials and methods: The sample of fatty acid salt is myristic (C14) dissolved in KOH solution to a concentration of 350 mM and pH 10.5. Rice dough was consisted of 100 g of flour using rice flour and wheat gluten, 5 g of sugar, 1.7 g of salt, 1.7g of dry yeast, 80 mL of water and fatty acid salt. Mixing was performed for 500 times by using hand. The concentration of C14K in the dough was 10 % relative to flour weight. Amount of gluten in the dough was 20 %, 30 % relative to flour weight. Dough expansion ability test was performed to measure physical property of bread dough according to the methods of Baker’s Yeast by Japan Yeast Industry Association. In this test, 150 g of dough was filled from bottom of the cylinder and fermented at 30 °C,85 % humidity for 120 min on an incubator. The height of the expansion in the dough was measured and determined its expansion ability. Results and Conclusion: Expansion ability of rice dough with gluten content of 20 %, 30% showed 316 mL, 341 mL for 120 min. When C14K adding to the rice dough, dough expansion abilities were 314 mL, 368 mL for 120 min, there was no significant difference. Conventionally it has been known that the rice flour dough contain gluten of 20 %. The considerable improvement of dough expansion ability was achieved when added C14K to wheat flour. The experimental result shows that c14k adding to the rice dough with gluten content more than 20 % was not improving bread-making properties. In conclusion, rice bread made with gluten content more than 20 % without C14K has been suggested to contribute to the formation of the sufficient gluten network.

Keywords: expansion ability, fatty acid salt, gluten, rice flour dough

Procedia PDF Downloads 249
7374 Environmental Protection and Natural Resources Management, and Organic Farming in Nepal

Authors: Megha Raj Regmi

Abstract:

Nepalese topography has the largest variations in altitude in the world, ranging from 60 metre to 8848 metre above the mean sea level, Nepal is endowed with second position in water resources in the world, and is comprised of more than 6,000 rivers and rivulets, however, it faces serious water crunch and water pollution : deterioration of ecosystem. Due to climate change reasons, in all the places of Nepal ground water table has been substantially depleted and with its impact many people are suffering seriously to fetch water for daily use. This research work basically deals with twenty-two biogas toilets constructed in peri-urban areas of Nepal in two research centres for organic agriculture. The work has used appropriate technology and studied their performances in the context of Nepal, based on the regular monitoring. The work found that the biogas energy producing toilet have a clear advantage in the gas recovery for domestic purpose and a sustainable mitigation measure for climate change and organic farming. This paper describes the climate change issues of Nepal; similarly it deals with the potential threats of climate change to water supply, agriculture, food security, temperature increase, and adaptation measures. This paper also deals in depth analysis of the different types of successful biogas energy production technology, organic farming, sustainable sanitation and health aspects from the twenty two biogas energy units constructed in different altitudes of Nepal.

Keywords: environmental protection, biomass energy, climate change, organic farming

Procedia PDF Downloads 17
7373 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 106
7372 Role of Collaborative Cultural Model to Step on Cleaner Energy: A Case of Kathmandu City Core

Authors: Bindu Shrestha, Sudarshan R. Tiwari, Sushil B. Bajracharya

Abstract:

Urban household cooking fuel choice is highly influenced by human behavior and energy culture parameters such as cognitive norms, material culture and practices. Although these parameters have a leading role in Kathmandu for cleaner households, they are not incorporated in the city’s energy policy. This paper aims to identify trade-offs to transform resident behavior in cooking pattern towards cleaner technology from the questionnaire survey, observation, mapping, interview, and quantitative analysis. The analysis recommends implementing a Collaborative Cultural Model (CCM) for changing impact on the neighborhood from the policy level. The results showed that each household produces 439.56 kg of carbon emission each year and 20 percent used unclean technology due to low-income level. Residents who used liquefied petroleum gas (LPG) as their cooking fuel suffered from an energy crisis every year that has created fuel hoarding, which ultimately creates more energy demand and carbon exposure. In conclusion, the carbon emission can be reduced by improving the residents’ energy consumption culture. It recommended the city to use holistic action of changing habits as soft power of collaboration in two-way participation approach within residents, private sectors, and government to change their energy culture and behavior in policy level.

Keywords: energy consumption pattern, collaborative cultural model, energy culture, fuel stacking

Procedia PDF Downloads 136
7371 Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips

Authors: Wei Chen, Jinlong Pan

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 100
7370 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 165
7369 Artificial Intelligence in Art and Other Sectors: Selected Aspects of Mutual Impact

Authors: Justyna Minkiewicz

Abstract:

Artificial Intelligence (AI) applied in the arts may influence the development of AI knowledge in other sectors and then also impact mutual collaboration with the artistic environment. Hence this collaboration may also impact the development of art projects. The paper will reflect the qualitative research outcomes based on in-depth (IDI) interviews within the marketing sector in Poland and desk research. Art is a reflection of the spirit of our times. Moreover, now we are experiencing a significant acceleration in the development of technologies and their use in various sectors. The leading technologies that contribute to the development of the economy, including the creative sector, embrace technologies such as artificial intelligence, blockchain, extended reality, voice processing, and virtual beings. Artificial intelligence is one of the leading technologies developed for several decades, which is currently reaching a high level of interest and use in various sectors. However, the conducted research has shown that there is still low awareness of artificial intelligence and its wide application in various sectors. The study will show how artists use artificial intelligence in their art projects and how it can be translated into practice within the business. At the same time, the paper will raise awareness of the need for businesses to be inspired by the artistic environment. The research proved that there is still a need to popularize knowledge about this technology which is crucial for many sectors. Art projects are tools to develop knowledge and awareness of society and also various sectors. At the same time, artists may benefit from such collaboration. The paper will include selected aspects of mutual relations, areas of possible inspiration, and possible transfers of technological solutions. Those are AI applications in creative industries such as advertising and film, image recognition in art, and projects from different sectors.

Keywords: artificial intelligence, business, art, creative industry, technology

Procedia PDF Downloads 109