Search results for: markov chain monte carlo
1971 Etude 3D Quantum Numerical Simulation of Performance in the HEMT
Authors: A. Boursali, A. Guen-Bouazza
Abstract:
We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum
Procedia PDF Downloads 3491970 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition
Procedia PDF Downloads 4801969 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.Keywords: dynamic modelling, energy used, hybrid inventory, supply chain
Procedia PDF Downloads 2681968 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems
Authors: Mohamed Barbary, Mohamed H. Abd El-azeem
Abstract:
Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter
Procedia PDF Downloads 581967 3D Quantum Simulation of a HEMT Device Performance
Authors: Z. Kourdi, B. Bouazza, M. Khaouani, A. Guen-Bouazza, Z. Djennati, A. Boursali
Abstract:
We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.Keywords: HEMT, Silvaco, field plate, genetic algorithm, quantum
Procedia PDF Downloads 4761966 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 391965 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 751964 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain
Authors: Xiangrong Liu, Chuanhui Xiong
Abstract:
With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.Keywords: photovoltaic, supply chain, inventory policy, base-stock policy
Procedia PDF Downloads 3481963 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network
Authors: Ghobad Gorji, Hasan Golabi
Abstract:
The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK
Procedia PDF Downloads 741962 Contribution of Supply Chain Management Practices for Enhancing Healthcare Service Quality: A Quantitative Analysis in Delhi’s Healthcare Sector
Authors: Chitrangi Gupta, Arvind Bhardwaj
Abstract:
This study seeks to investigate and quantify the influence of various dimensions of supply chain management (namely, supplier relationships, compatibility, specifications and standards, delivery processes, and after-sales service) on distinct dimensions of healthcare service quality (specifically, responsiveness, trustworthiness, and security) within the operational framework of XYZ Superspeciality Hospital, situated in Delhi. The name of the Hospital is not being mentioned here because of the privacy policy of the hospital. The primary objective of this research is to elucidate the impact of supply chain management practices on the overall quality of healthcare services offered within hospital settings. Employing a quantitative research design, this study utilizes a hypothesis-testing approach to systematically discern the relationship between supply chain management dimensions and the quality of health services. The findings of this study underscore the significant influence exerted by supply chain management dimensions, specifically supplier relationships, specifications and standards, delivery processes, and after-sales service, on the enhancement of healthcare service quality. Moreover, the study's results reveal that demographic factors such as gender, qualifications, age, and experience do not yield discernible disparities in the relationship between supply chain management and healthcare service quality.Keywords: supply chain management, healthcare, hospital operations, service delivery
Procedia PDF Downloads 671961 Research of Intrinsic Emittance of Thermal Cathode with Emission Nonuniformity
Authors: Yufei Peng, Zhen Qin, Jianbe Li, Jidong Long
Abstract:
The thermal cathode is widely used in accelerators, FELs and kinds of vacuum electronics. However, emission nonuniformity exists due to surface profile, material distribution, temperature variation, crystal orientation, etc., which will cause intrinsic emittance growth, brightness decline, envelope size augment, device performance deterioration or even failure. To understand how emittance is manipulated by emission nonuniformity, an intrinsic emittance model consisting of contributions from macro and micro surface nonuniformity is developed analytically based on general thermal emission model at temperature limited regime according to a real 3mm cathode. The model shows relative emittance increased about 50% due to temperature variation, and less than 5% from several kinds of micro surface nonuniformity which is much smaller than other research. Otherwise, we also calculated emittance growth combining with Monte Carlo method and PIC simulation, experiments of emission uniformity and emittance measurement are going to be carried out separately.Keywords: thermal cathode, electron emission fluctuation, intrinsic emittance, surface nonuniformity, cathode lifetime
Procedia PDF Downloads 2981960 Automatic Censoring in K-Distribution for Multiple Targets Situations
Authors: Naime Boudemagh, Zoheir Hammoudi
Abstract:
The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.Keywords: parameters estimation, method of moments, automatic censoring, K distribution
Procedia PDF Downloads 3731959 Reshoring Strategies for Enhanced Supply Chain Resilience: A Comprehensive Analysis of Procurement Challenges and Solutions in the United States
Authors: Emilia Segun-Ajao
Abstract:
The strategy of relocation aimed at strengthening supply chain resilience in the United States is examined, taking into account recent global disturbances and vulnerabilities in offshore manufacturing. It explains the procurement challenges faced by enterprises and offers solutions to mitigate risks and improve resilience. Through the analysis of innovative approaches, including technological advances, policy considerations, and strategic frameworks, this study provides insights to decision-makers about the complexity of supply chain management. Reshoring has gained attention as a strategy to improve supply chain resilience in the face of global disruptions. This analysis focuses on the importance of relocating as a multifaceted approach to strengthening supply chains, advocating economic benefits, technological advances, and policy frameworks to create a more robust supply landscape in the United States.Keywords: collaborative partnerships, supply chain resilience, procurement challenges, technology adoption
Procedia PDF Downloads 631958 Bayesian Hidden Markov Modelling of Blood Type Distribution for COVID-19 Cases Using Poisson Distribution
Authors: Johnson Joseph Kwabina Arhinful, Owusu-Ansah Emmanuel Degraft Johnson, Okyere Gabrial Asare, Adebanji Atinuke Olusola
Abstract:
This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rates within and across the two geographical areas differ according to blood type.Keywords: BP-HMM, COVID-19, blood types, GIBBS sampler
Procedia PDF Downloads 1291957 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 871956 Factors Affecting Green Supply Chain Management of Lampang Ceramics Industry
Authors: Nattida Wannaruk, Wasawat Nakkiew
Abstract:
This research aims to study the factors that affect the performance of green supply chain management in the Lampang ceramics industry. The data investigation of this research was questionnaires which were gathered from 20 factories in the Lampang ceramics industry. The research factors are divided into five major groups which are green design, green purchasing, green manufacturing, green logistics and reverse logistics. The questionnaire has consisted of four parts that related to factors green supply chain management and general information of the Lampang ceramics industry. Then, the data were analyzed using descriptive statistic and priority of each factor by using the analytic hierarchy process (AHP). The understanding of factors affecting the green supply chain management of Lampang ceramics industry was indicated in the summary result along with each factor weight. The result of this research could be contributed to the development of indicators or performance evaluation in the future.Keywords: Lampang ceramics industry, green supply chain management, analysis hierarchy process (AHP), factors affecting
Procedia PDF Downloads 3321955 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-Industrial Sector
Authors: Rym Ghariani, Younes Boujelbene
Abstract:
This study aimed to examine the impact of digitalization and supply chain integration on the financial performance of companies in the agro-industrial sector in Tunisia, highlighting the growing importance of digital technologies in modern economies. The results were analyzed using a questionnaire and using principal component analysis, as well as linear regression modeling with SPSS26. The results demonstrate that the digitalization and integration of the supply chain have a significant impact on the financial results of Tunisian agro-industrial companies. In theory, this study provides a better understanding of the effects of digital advancements and supply chain strategies on financial results in this specific area. This study, therefore, studies the relationship between these variables and financial efficiency, highlighting the significant impacts of these technological and strategic elements on the financial results of agro-industrial companies in Tunisia.Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector
Procedia PDF Downloads 431954 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 631953 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 3441952 Refined Procedures for Second Order Asymptotic Theory
Authors: Gubhinder Kundhi, Paul Rilstone
Abstract:
Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments
Procedia PDF Downloads 2771951 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain
Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire
Abstract:
The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.Keywords: knowledge, attitude, practice, supply chain, articifial intellegence
Procedia PDF Downloads 911950 Inventory Optimization in Restaurant Supply Chain Outlets
Authors: Raja Kannusamy
Abstract:
The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting
Procedia PDF Downloads 911949 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs
Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli
Abstract:
We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.Keywords: diffusion processes, metric graphs, invariant measure, reversibility
Procedia PDF Downloads 1721948 The Development of a Comprehensive Sustainable Supply Chain Performance Measurement Theoretical Framework in the Oil Refining Sector
Authors: Dina Tamazin, Nicoleta Tipi, Sahar Validi
Abstract:
The oil refining industry plays vital role in the world economy. Oil refining companies operate in a more complex and dynamic environment than ever before. In addition, oil refining companies and the public are becoming more conscious of crude oil scarcity and climate changes. Hence, sustainability in the oil refining industry is becoming increasingly critical to the industry's long-term viability and to the environmental sustainability. Mainly, it is relevant to the measurement and evaluation of the company's sustainable performance to support the company in understanding their performance and its implication more objectively and establishing sustainability development plans. Consequently, the oil refining companies attempt to re-engineer their supply chain to meet the sustainable goals and standards. On the other hand, this research realized that previous research in oil refining sustainable supply chain performance measurements reveals that there is a lack of studies that consider the integration of sustainability in the supply chain performance measurement practices in the oil refining industry. Therefore, there is a need for research that provides performance guidance, which can be used to measure sustainability and assist in setting sustainable goals for oil refining supply chains. Accordingly, this paper aims to present a comprehensive oil refining sustainable supply chain performance measurement theoretical framework. In development of this theoretical framework, the main characteristics of oil refining industry have been identified. For this purpose, a thorough review of relevant literature on performance measurement models and sustainable supply chain performance measurement models has been conducted. The comprehensive oil refining sustainable supply chain performance measurement theoretical framework introduced in this paper aims to assist oil refining companies in measuring and evaluating their performance from a sustainability aspect to achieve sustainable operational excellence.Keywords: oil refining industry, oil refining sustainable supply chain, performance measurement, sustainability
Procedia PDF Downloads 2871947 Analysis of Exponential Distribution under Step Stress Partially Accelerated Life Testing Plan Using Adaptive Type-I Hybrid Progressive Censoring Schemes with Competing Risks Data
Authors: Ahmadur Rahman, Showkat Ahmad Lone, Ariful Islam
Abstract:
In this article, we have estimated the parameters for the failure times of units based on the sampling technique adaptive type-I progressive hybrid censoring under the step-stress partially accelerated life tests for competing risk. The failure times of the units are assumed to follow an exponential distribution. Maximum likelihood estimation technique is used to estimate the unknown parameters of the distribution and tampered coefficient. Confidence interval also obtained for the parameters. A simulation study is performed by using Monte Carlo Simulation method to check the authenticity of the model and its assumptions.Keywords: adaptive type-I hybrid progressive censoring, competing risks, exponential distribution, simulation, step-stress partially accelerated life tests
Procedia PDF Downloads 3431946 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas
Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus
Abstract:
This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution
Procedia PDF Downloads 4261945 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain
Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim
Abstract:
As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.Keywords: scan chain, single event transient, soft error, 8051 processor
Procedia PDF Downloads 3471944 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry
Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim
Abstract:
Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain
Procedia PDF Downloads 911943 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5391942 The Effects of Cost-Sharing Contracts on the Costs and Operations of E-Commerce Supply Chains
Authors: Sahani Rathnasiri, Pritee Ray, Sardar M. N. Isalm, Carlos A. Vega-Mejia
Abstract:
This study develops a cooperative game theory-based cost-sharing contract model for a business to consumer (B2C) e-commerce supply chain to minimize the overall supply chain costs and the individual costs within an information asymmetry scenario. The objective of this study is to address the issues of strategic interactions among the key players of the e-commerce supply chain operation, which impedes the optimal operational outcomes. Game theory has been included in the field of supply chain management to resolve strategic decision-making issues; however, most of the studies are limited only to two-echelons of the supply chains. Multi-echelon supply chain optimizations based on game-theoretic models are less explored in the previous literature. This study adopts a cooperative game model to focus on the common payoff of operations and addresses the issues of information asymmetry and coordination of a three-echelon e-commerce supply chain. The cost-sharing contract model integrates operational features such as production, inventory management and distribution with the contract related constraints. The outcomes of the model highlight the importance of maintaining lower operational costs by all players to obtain benefits from the cost-sharing contract. Further, the cost-sharing contract ensures true cost revelation, and hence eliminates the information asymmetry issues among the players. Comparing the results of the contract model with the de-centralized e-commerce supply chain operation further emphasizes that the cost-sharing contract derives Pareto-improved outcomes and minimizes the costs of overall e-commerce supply chain operation.Keywords: cooperative game theory, cost-sharing contract, e-commerce supply chain, information asymmetry
Procedia PDF Downloads 128