Search results for: hyperparameters optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3303

Search results for: hyperparameters optimization

2883 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing

Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano

Abstract:

Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.

Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning

Procedia PDF Downloads 446
2882 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 498
2881 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: block layout problem, building-block layout design, CAD, optimization, search techniques

Procedia PDF Downloads 388
2880 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Ibrahim Cicek, Melike Nikbay

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: optimization, e-powertrain, optimal control, electric vehicles

Procedia PDF Downloads 136
2879 The Optimization Process of Aortic Heart Valve Stent Geometry

Authors: Arkadiusz Mezyk, Wojciech Klein, Mariusz Pawlak, Jacek Gnilka

Abstract:

The aortic heart valve stents should fulfill many criterions. These criteria have a strong impact on the geometrical shape of the stent. Usually, the final construction of stent is a result of many year experience and knowledge. Depending on patents claims, different stent shapes are produced by different companies. This causes difficulties for biomechanics engineers narrowing the domain of feasible solutions. The paper present optimization method for stent geometry defining by a specific analytical equation based on various mathematical functions. This formula was implemented as APDL script language in ANSYS finite element environment. For the purpose of simulation tests, a few parameters were separated from developed equation. The application of the genetic algorithms allows finding the best solution due to selected objective function. Obtained solution takes into account parameters such as radial force, compression ratio and coefficient of expansion on the transverse axial.

Keywords: aortic stent, optimization process, geometry, finite element method

Procedia PDF Downloads 286
2878 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus

Authors: Mrinmoy Majumder, Apu Kumar Saha

Abstract:

The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.

Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering

Procedia PDF Downloads 481
2877 Optimization of Media for Enhanced Fermentative Production of Mycophenolic Acid by Penicillium brevicompactum

Authors: Shraddha Digole, Swarali Hingse, Uday Annapure

Abstract:

Mycophenolic acid (MPA) is an immunosuppressant; produced by Penicillium Sp. Box-Behnken statistical experimental design was employed to optimize the condition of Penicillium brevicompactum NRRL 2011 for mycophenolic acid (MPA) production. Initially optimization of various physicochemical parameters and media components was carried out using one factor at a time approach and significant factors were screened by Taguchi L-16 orthogonal array design. Taguchi design indicated that glucose, KH2PO4 and MgSO4 had significant effect on MPA production. These variables were selected for further optimization studies using Box-Behnken design. Optimised fermentation condition, glucose (60 g/L), glycine (28 g/L), L-leucine (1.5g/L), KH2PO4 (3g/L), MgSO4.7H2O (1.5g/L), increased the production of MPA from 170 mg/L to 1032.54 mg/L. Analysis of variance (ANOVA) showed a high value of coefficient of determination R2 (0.9965), indicating a good agreement between experimental and predicted values and proves validity of the statistical model.

Keywords: Box-Behnken design, fermentation, mycophenolic acid, Penicillium brevicompactum

Procedia PDF Downloads 456
2876 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed.  To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.

Keywords: design optimization, performance, DFIG, differential evolution

Procedia PDF Downloads 150
2875 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration

Procedia PDF Downloads 427
2874 Spatial Optimization of Riverfront Street Based on Inclusive Design

Authors: Lianxue Shi

Abstract:

Riverfront street has the dual characteristics of street space and waterfront space, which is not only a vital place for residents to travel and communicate but also a high-frequency space for people's leisure and entertainment. However, under the development of cities and towns pursuing efficiency, riverfront streets appear to have a variety of problems, such as a lack of multifunctionality, insufficient facilities, and loss of characteristics, which fail to meet the needs of various groups of people, and their inclusiveness is facing a great challenge. It is, therefore, evident that the optimization of riverfront street space from an inclusivity perspective is important to the establishment of a human-centered, high-quality urban space. Therefore, this article starts by exploring the interactive relationship between inclusive design and street space. Based on the analysis of the characteristics of the riverfront street space and people's needs, it proposes the four inclusive design orientations of natural inclusion, group inclusion, spatial inclusion, and social inclusion. It then constructs a design framework for the inclusive optimization of riverfront street space, aiming to create streets that are “safe and accessible, diverse and shared, distinctive and friendly, green and sustainable”. Riverfront streets in Wansheng District, Chongqing, are selected as a practice case, and specific strategies are put forward in four aspects: the creation of an accessible slow-traffic system, the provision of diversified functional services, the reshaping of emotional bonds and the integration of ecological spaces.

Keywords: inclusiveness design, riverfront street, spatial optimization, street spaces

Procedia PDF Downloads 40
2873 Optimization of the Numerical Fracture Mechanics

Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej

Abstract:

In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.

Keywords: fracture mechanics, optimization, variation approach, mechanic

Procedia PDF Downloads 609
2872 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows

Authors: Imen Boudali, Marwa Ragmoun

Abstract:

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.

Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO

Procedia PDF Downloads 416
2871 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 299
2870 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain

Authors: G. Hafner

Abstract:

A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.

Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency

Procedia PDF Downloads 411
2869 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 321
2868 Studying the Theoretical and Laboratory Design of a Concrete Frame and Optimizing Its Design for Impact and Earthquake Resistance

Authors: Mehrdad Azimzadeh, Seyed Mohammadreza Jabbari, Mohammadreza Hosseinzadeh Alherd

Abstract:

This paper includes experimental results and analytical studies about increasing resistance of single-span reinforced concreted frames against impact factor and their modeling according to optimization methods and optimizing the behavior of these frames under impact loads. During this study, about 30 designs for different frames were modeled and made using specialized software like ANSYS and Sap and their behavior were examined under variable impacts. Then suitable strategies were offered for frames in terms of concrete mixing in order to optimize frame modeling. To reduce the weight of the frames, we had to use fine-grained stones. After designing about eight types of frames for each type of frames, three samples were designed with the aim of controlling the impact strength parameters, and a good shape of the frame was created for the impact resistance, which was a solid frame with muscular legs, and as a bond away from each other as much as possible with a 3 degree gradient in the upper part of the beam.

Keywords: optimization, reinforced concrete, optimization methods, impact load, earthquake

Procedia PDF Downloads 188
2867 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 84
2866 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah

Abstract:

The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 127
2865 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 221
2864 Optimization of Steel Moment Frame Structures Using Genetic Algorithm

Authors: Mohammad Befkin, Alireza Momtaz

Abstract:

Structural design is the challenging aspect of every project due to limitations in dimensions, functionality of the structure, and more importantly, the allocated budget for construction. This research study aims to investigate the optimized design for three steel moment frame buildings with different number of stories using genetic algorithm code. The number and length of spans, and height of each floor were constant in all three buildings. The design of structures are carried out according to AISC code within the provisions of plastic design with allowable stress values. Genetic code for optimization is produced using MATLAB program, while buildings modeled in Opensees program and connected to the MATLAB code to perform iterations in optimization steps. In the end designs resulted from genetic algorithm code were compared with the analysis of buildings in ETABS program. The results demonstrated that suggested structural elements by the code utilize their full capacity, indicating the desirable efficiency of produced code.

Keywords: genetic algorithm, structural analysis, steel moment frame, structural design

Procedia PDF Downloads 124
2863 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 382
2862 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System

Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev

Abstract:

During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.

Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient

Procedia PDF Downloads 245
2861 Execution of Optimization Algorithm in Cascaded H-Bridge Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the harmonic elimination of Cascaded H-Bridge Multi-Level Inverter by using Selective Harmonic Elimination-Pulse Width Modulation method programmed with Particle Swarm Optimization algorithm. PSO method determine proficiently the required switching angles to eliminate low order harmonics up to the 11th order from the inverter output voltage waveform while keeping the magnitude of the fundamental harmonics at the desired value. Results demonstrate that the proposed method does efficiently eliminate a great number of specific harmonics and the output voltage is resulted in minimum Total Harmonic Distortion. The results shown that the PSO algorithm attain successfully to the global solution faster than other algorithms.

Keywords: multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Particle Swarm Optimization (PSO), Total Harmonic Distortion (THD)

Procedia PDF Downloads 607
2860 Optimization of Wavy Channel Using Genetic Algorithm

Authors: Yue-Tzu Yang, Peng-Jen Chen

Abstract:

The present study deals with the numerical optimization of wavy channel with the help of genetic algorithm (GA). Three design variables related to the wave amplitude (A), the wavelength (λ) and the channel aspect ratio (α) are chosen and their ranges are decided through preliminary calculations of three-dimensional Navier-stokes and energy equations. A parametric study is also performed to show the effects of different design variables on the overall performance of the wavy channel. Objective functions related to the heat transfer and pressure drop, performance factor (PF) is formulated to analyze the performance of the wavy channel. The numerical results show that the wave amplitude and the channel aspect ratio have significant effects on the thermal performance. It can improve the performance of the wavy channels by increasing wave amplitude or decreasing the channel aspect ratio. Increasing wavelengths have no significant effects on the heat transfer performance.

Keywords: wavy channel, genetic algorithm, optimization, numerical simulation

Procedia PDF Downloads 303
2859 Development of an Efficient Algorithm for Cessna Citation X Speed Optimization in Cruise

Authors: Georges Ghazi, Marc-Henry Devillers, Ruxandra M. Botez

Abstract:

Aircraft flight trajectory optimization has been identified to be a promising solution for reducing both airline costs and the aviation net carbon footprint. Nowadays, this role has been mainly attributed to the flight management system. This system is an onboard multi-purpose computer responsible for providing the crew members with the optimized flight plan from a destination to the next. To accomplish this function, the flight management system uses a variety of look-up tables to compute the optimal speed and altitude for each flight regime instantly. Because the cruise is the longest segment of a typical flight, the proposed algorithm is focused on minimizing fuel consumption for this flight phase. In this paper, a complete methodology to estimate the aircraft performance and subsequently compute the optimal speed in cruise is presented. Results showed that the obtained performance database was accurate enough to predict the flight costs associated with the cruise phase.

Keywords: Cessna Citation X, cruise speed optimization, flight cost, cost index, and golden section search

Procedia PDF Downloads 295
2858 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System

Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar

Abstract:

The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.

Keywords: genetic algorithm, energy, exergy, PVT module, optimization

Procedia PDF Downloads 608
2857 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 176
2856 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips

Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi

Abstract:

In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.

Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking

Procedia PDF Downloads 457
2855 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 74
2854 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 213