Search results for: geometric distortions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: geometric distortions

290 Serviceability of Fabric-Formed Concrete Structures

Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr

Abstract:

Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.

Keywords: fabric-formed concrete, continuous beams, optimisation, serviceability

Procedia PDF Downloads 372
289 Tool Wear Analysis in 3D Manufactured Ti6AI4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical/aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear

Procedia PDF Downloads 91
288 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.

Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping

Procedia PDF Downloads 131
287 Reformulation of Theory of Critical Distances to Predict the Strength of Notched Plain Concrete Beams under Quasi Static Loading

Authors: Radhika V., J. M. Chandra Kishen

Abstract:

The theory of critical distances (TCD), due to its appealing characteristics, has been successfully used in the past to predict the strength of brittle as well as ductile materials, weakened by the presence of stress risers under both static and fatigue loading. By utilising most of the TCD's unique features, this paper summarises an attempt for a reformulation of the point method of the TCD to predict the strength of notched plain concrete beams under mode I quasi-static loading. A zone of micro cracks, which is responsible for the non-linearity of concrete, is taken into account considering the concept of an effective elastic crack. An attempt is also made to correlate the value of the material characteristic length required for the application of TCD with the maximum aggregate size in the concrete mix, eliminating the need for any extensive experimentation prior to the application of TCD. The devised reformulation and the proposed power law based relationship is found to yield satisfactory predictions for static strength of notched plain concrete beams, with geometric dimensions of the beam, tensile strength, and maximum aggregate size of the concrete mix being the only needed input parameters.

Keywords: characteristic length, effective elastic crack, inherent material strength, modeI loading, theory of critical distances

Procedia PDF Downloads 98
286 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 586
285 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar

Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.

Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation

Procedia PDF Downloads 241
284 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 340
283 Biomimetic Paradigms in Architectural Conceptualization: Science, Technology, Engineering, Arts and Mathematics in Higher Education

Authors: Maryam Kalkatechi

Abstract:

The application of algorithms in architecture has been realized as geometric forms which are increasingly being used by architecture firms. The abstraction of ideas in a formulated algorithm is not possible. There is still a gap between design innovation and final built in prescribed formulas, even the most aesthetical realizations. This paper presents the application of erudite design process to conceptualize biomimetic paradigms in architecture. The process is customized to material and tectonics. The first part of the paper outlines the design process elements within four biomimetic pre-concepts. The pre-concepts are chosen from plants family. These include the pine leaf, the dandelion flower; the cactus flower and the sun flower. The choice of these are related to material qualities and natural pattern of the tectonics of these plants. It then focuses on four versions of tectonic comprehension of one of the biomimetic pre-concepts. The next part of the paper discusses the implementation of STEAM in higher education in architecture. This is shown by the relations within the design process and the manifestation of the thinking processes. The A in the SETAM, in this case, is only achieved by the design process, an engaging event as a performing arts, in which the conceptualization and development is realized in final built.

Keywords: biomimetic paradigm, erudite design process, tectonic, STEAM (Science, Technology, Engineering, Arts, Mathematic)

Procedia PDF Downloads 211
282 Winkler Springs for Embedded Beams Subjected to S-Waves

Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto

Abstract:

Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.

Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction

Procedia PDF Downloads 61
281 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 172
280 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 312
279 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 61
278 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria

Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe

Abstract:

Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.

Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy

Procedia PDF Downloads 326
277 Point-Mutation in a Rationally Engineered Esterase Inverts its Enantioselectivity

Authors: Yasser Gaber, Mohamed Ismail, Serena Bisagni, Mohamad Takwa, Rajni Hatti-Kaul

Abstract:

Enzymes are safe and selective catalysts. They skillfully catalyze chemical reactions; however, the native form is not usually suitable for industrial applications. Enzymes are therefore engineered by several techniques to meet the required catalytic task. Clopidogrel is recorded among the five best selling pharmaceutical in 2010 under the brand name Plavix. The commonly used route for production of the drug on an industrial scale is the synthesis of the racemic mixture followed by diastereomeric resolution to obtain the pure S isomer. The process consumes a lot of solvents and chemicals. We have evaluated a biocatalytic cleaner approach for asymmetric hydrolysis of racemic clopidogrel. Initial screening of a selected number of hydrolases showed only one enzyme EST to exhibit activity and selectivity towards the desired stereoisomer. As the crude EST is a mixture of several isoenzymes, a homology model of EST-1 was used in molecular dynamic simulations to study the interaction of the enzyme with R and S isomers of clopidogrel. Analysis of the geometric hindrances of the tetrahedral intermediates revealed a potential site for mutagenesis in order to improve the activity and the selectivity. Single point mutation showed dramatic increase in activity and inversion of the enantioselectivity (400 fold change in E value).

Keywords: biocatalysis, biotechnology, enzyme, protein engineering, molecular modeling

Procedia PDF Downloads 448
276 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis

Procedia PDF Downloads 205
275 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 242
274 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures

Authors: Murast Dicleli, Ali SalemMilani

Abstract:

In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.

Keywords: seismic, isolation, damper, adaptive stiffness

Procedia PDF Downloads 456
273 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 472
272 Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry

Authors: O. Moussous, T. Medjadj

Abstract:

The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom.

Keywords: Fricke dosimeter, depth–dose profiles, peak scatter factors, DSD

Procedia PDF Downloads 252
271 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 397
270 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
269 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse

Authors: Isaac Benning

Abstract:

Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar Sub-Saharan African countries.

Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion

Procedia PDF Downloads 128
268 The Position of Space weather in Africa-Education and Outreach

Authors: Babagana Abubakar, Alhaji Kuya

Abstract:

Although the field of Space weather science is a young field among the space sciences, but yet history has it that activities related to this science began since the year 1859 when the great solar storm happened which resulted in the disruptions of telegraphs operations around the World at that particular time subsequently making it possible for the scientist Richard Carrington to be able to connect the Solar flare observed a day earlier before the great storm and the great deflection of the Earth’s Magnetic field (geometric storm) simultaneous with the telegraph disruption. However years later as at today with the advent of and the coming into existence of the Explorer 1, the Luna 1 and the establishments of the United States International Space Weather Program, International Geophysical Year (IGY) as well as the International Center for Space Weather Sciences and Education (ICSWSE) have made us understand the Space weather better and enable us well define the field of Space weather science. Despite the successes recorded in the development of Space sciences as a whole over the last century and the coming onboard of specialized bodies/programs on space weather like the International Space Weather Program and the ICSWSE, the majority of Africans including institutions, research organizations and even some governments are still ignorant about the existence of theSpace weather science,because apart from some very few countries like South Africa, Nigeria and Egypt among some few others the majority of the African nations and their academic institutions have no knowledge or idea about the existence of this field of Space science (Space weather).

Keywords: Africa, space, weather, education, science

Procedia PDF Downloads 449
267 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

Authors: Mondher Yahyaoui

Abstract:

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection

Procedia PDF Downloads 435
266 Digitalization, Economic Growth and Financial Sector Development in Africa

Authors: Abdul Ganiyu Iddrisu

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth, and reducing poverty. Yet compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, low-income flows among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector, however, empirical evidence on digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We therefore argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa focusing on the role of digitization, and financial sector development. First, we assess how digitization influence financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on 2 economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improves economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, economic growth, financial sector development, Africa

Procedia PDF Downloads 103
265 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure

Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi

Abstract:

With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.

Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance

Procedia PDF Downloads 174
264 Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation

Authors: Nour El Houda Bensiradj, Nafila Zouaghi, Taha Bensiradj

Abstract:

The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined.

Keywords: heavy metals, NTA, TEA, DFT, IR, reactivity descriptors

Procedia PDF Downloads 101
263 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: offshore platforms, stability, postulated failure, dynamic tether tension

Procedia PDF Downloads 179
262 Digitization and Economic Growth in Africa: The Role of Financial Sector Development

Authors: Abdul Ganiyu Iddrisu, Bei Chen

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth and reducing poverty. Yet the compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, and low-income flows, among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector. However, empirical evidence on the digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We, therefore, argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa, focusing on the role of digitization and financial sector development. First, we assess how digitization influences financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to the private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improve economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, financial sector development, Africa, economic growth

Procedia PDF Downloads 140
261 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations

Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval

Abstract:

Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).

Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation

Procedia PDF Downloads 373