Search results for: decision experts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5071

Search results for: decision experts

4651 Action Research through Drama in Education on Adolescents’ Career Self-Efficacy and Decision-Making Skills Development

Authors: Christina Zourna, Ioanna Papavassiliou-Alexiou

Abstract:

The purpose of this multi-phased action research PhD study in Greece was to investigate if and how Drama in Education (DiE) – used as an innovative group counselling method – may have positive effects on secondary education students’career self-efficacy and career decision-making skills development. Using both quantitative and qualitative research tools, high quality data were gathered at various stages of the research and were analysed through multivariate methods and open-source computer aided data analysis software such as R Studio, QualCoder, and SPSS packages. After a five-month-long educational intervention based on DiE method, it was found that 9th, 10th, and 11th gradersameliorated their self-efficacy and learned the process of making an informed career decision – through targeted information gathering about themselves and possible study paths – thus, developing career problem-solving and career management skills. Gender differences were non statistically important, while differences in grades showed a minor influence on some of the measured factorssuch as general career indecisiveness and self-evaluation. Students in the 11th grade scored significantly higher than younger students in the career self-efficacy scale and have stronger faith in their abilities e.g., choosing general over vocational school and major study orientation. The study has shown that DiE can be effective in group career guidance, especially concerning the pillars of self-awareness, self-efficacy, and career decision-making processes.

Keywords: career decision-making skills, career self-efficacy, CDDQ scale, CDMSE-SF scale, drama in education method

Procedia PDF Downloads 125
4650 Developing Fire Risk Factors for Existing Small-Scale Hospitals

Authors: C. L. Wu, W. W. Tseng

Abstract:

From the National Health Insurance (NHI) system was introduced in Taiwan in 2000, there have been some problems in transformed small-scale hospitals, such as mobility of patients, shortage of nursing staff, medical pipelines breaking fire compartments and insufficient fire protection systems. Due to shrinking of the funding scale and the aging society, fire safety in small-scale hospitals has recently given cause for concern. The aim of this study is to determine fire risk index for small-scale hospital through a systematic approach The selection of fire safety mitigation methods can be regarded as a multi-attribute decision making process which must be guaranteed by expert groups. First of all, identify and select safety related factors and identify evaluation criteria through literature reviews and experts group. Secondly, application of the Fuzzy Analytic Hierarchy Process method is used to ascertain a weighted value which enables rating of the importance each of the selected factors. Overall, Sprinkler type and Compartmentation are the most crucial indices in mitigating fire, that is to say, structural approach play an important role to decrease losses in fire events.

Keywords: Fuzzy Delphi Method, fuzzy analytic hierarchy, process risk assessment, fire events

Procedia PDF Downloads 447
4649 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: emotions, decision making, somatic marker, consumer´s brain

Procedia PDF Downloads 404
4648 Analysis of Preferences in Decision Making in a Bilateral Negotiation Context: An Experimental Approach from Game Theory

Authors: Laura V. Gonzalez, Juan B. Duarte, Luis A. Palacio

Abstract:

Decision making can be conditioned by factors such as the environments, circumstances, behavioral biases, emotions, beliefs and preferences of the participants. The objective of this paper is to analyze the effect ‘amount of information’ and ‘number of options’, on the behavior of competitors under a bilateral negotiation context. For the above, it has been designed an experiment as a classroom game where they negotiate goods, under the condition that none of the players knows exactly the real value of the asset. The game is designed under the concept of zero-sum (non-cooperative game) and focuses on the fact that agents must anticipate the strategies of their opponent to improve their chances of winning in the negotiation. The empirical results show that, contrary to the traditional view of expected utility theory, players prefer to obtain low profits and losses, when faced with a higher expectation of losses, using sub-optimal strategies not in accordance with game theory.

Keywords: bilateral negotiation, classroom game, decision making, game theory

Procedia PDF Downloads 263
4647 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System

Authors: Y. Kourd, D. Lefebvre

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.

Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis

Procedia PDF Downloads 626
4646 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
4645 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance

Authors: Omar Mayyas

Abstract:

Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.

Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education

Procedia PDF Downloads 67
4644 Factors Associated with the Acceptance and Rejection of Rural Livestock Insurance in Garmsar: Semnan Province

Authors: Ali Ashraf Hamedi Oghul Beyk

Abstract:

The main objective of the study is to determine the factors which influence the acceptance or rejection of rural livestock insurance in Garmsar. The research method is descriptive one. There are two groups of research populations: 1467 cases in acceptance group and 7000 cases in rejection group. The sample population is 320 cases among 8467 ones. Data collection instrument is questionnaire. The validity of the questionnaire was measured by faculty members and other agriculture experts and also reliability of it determined through Cronbach alpha which was %83. Correlation between acceptance and rejection of investigated population. According to the findings of the research, between educational level, basic income from farm-related communication channels, contacts of experts and acceptance and rejection of livestock insurance at %5 & the mortality rate, loan awareness of the objectives of the livestock insurance benefits %1 there is a meaningful relationship. Mann-Whitney test shows the different educational levels, different awareness and interest to livestock insurance between the two groups. Besides, the T-test shows the livestock losses rate in two groups.

Keywords: insurance, livestock, Garmsar, Semnan

Procedia PDF Downloads 351
4643 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 158
4642 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
4641 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education

Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman

Abstract:

Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.

Keywords: usage, software, diagnosis and treatment, medical education

Procedia PDF Downloads 359
4640 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company

Authors: Wai Ho Darrell Kwok

Abstract:

Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.

Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making

Procedia PDF Downloads 243
4639 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services

Authors: Rishi Kanth Saripalle

Abstract:

Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.

Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards

Procedia PDF Downloads 282
4638 Identifying Strategies and Techniques for the Egyptian Medium and Large Size Contractors to Respond to Economic Hardship

Authors: Michael Salib, Samer Ezeldin, Ahmed Waly

Abstract:

There are numerous challenges and problems facing the construction industry in several countries in the Middle East, as a result of numerous economic and political effects. As an example in Egypt, several construction companies have shut down and left the market since 2016. The closure of these companies occurred, as they did not respond with the suitable techniques and strategies that will enable them to survive during this economic turmoil period. A research is conducted in order to identify adequate strategies to be implemented by the Egyptian contractors that could allow them survive and keep competing during such economic hardship period. Two different techniques were used in order to identify these startegies. First, a deep research were conducted on the companies located in countries that suffered similar economic harship to identify the strategies they used in order to survive. Second, interviews were conducted with experts in the construction field in order to list the effective strategies they used that allowed them to survive. Moreover, at the end of each interview, the experts were asked to rate the applicability of the previously identified strategies used in the foreign countries, then the efficiency of each strategy if used in Egypt. A framework model is developed in order to assist the construction companies in choosing the suitable techniques to their company size, through identifying the top ranked strategies and techniques that should be adopted by the company based on the parameters given to the model. In order to verify this framework, the financial statements of two leading companies in the Egyptian construction market were studied. The first Contractor has applied nearly all the top ranked strategies identified in this paper, while the other contractor has applied only few of the identified top ranked strategies. Finally, another expert interviews were conducted in order to validate the framework. These experts were asked to test the model and rate through a questionnaire its applicability and effectiveness.

Keywords: construction management, economic hardship, recession, survive

Procedia PDF Downloads 126
4637 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
4636 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment

Authors: Bezhan Ghvaberidze

Abstract:

A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.

Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory

Procedia PDF Downloads 119
4635 Analysis of Conditional Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians

Authors: Larry O. Awo, George N. Duru

Abstract:

There are growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement was driven by a quest for resource gains. However, evidence shows that the economic model of gambling tends to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover losses has often initiated prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcomes as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decisions of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p <.05, respectively), 2) downward counterfactual reasoning was negatively associated with the decision to gamble more to recover losses (B = 10.03, t = 3.21, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at the low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings is that IOC and upward counterfactual reasoning were risk factors and promoted gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.

Keywords: counterfactual reasoning, gambling cognition, gambling decision, Nigeria, youths

Procedia PDF Downloads 90
4634 An Influence of Marketing Mix on Hotel Booking Decision: Japanese Senior Traveler Case

Authors: Kingkan Pongsiri

Abstract:

The study of marketing mix influencing on hotel booking decision making: Japanese senior traveler case aims to study the individual factors that are involved in the decision-making reservation for Japanese elderly travelers. Then, it aims to study other factors that influence the decision of tourists booking elderly Japanese people. This is a quantitative research methods, total of 420 completed questionnaires were collect via a Non-Probability sampling techniques. The study found that the majority of samples were female, 53.3 percent of 224 people aged between 66-70 years were 197, representing a 46.9 percent majority, the marital status of marriage is 212 per cent.50.5. Majority of samples have a bachelor degree of education with number of 326 persons (77.6 percentages) 50 percentages of samples (210 people) have monthly income in between 1,501-2,000 USD. The Samples mostly have a length of stay in a short period between 1-14 days counted as 299 people which representing 71.2 percentages of samples. The senior Japanese tourists apparently sensitive to the factors of products/services the most. Then they seem to be sensitive to the price, the marketing promotion and people, respectively. There are two factors identified as moderately influence to the Japanese senior tourists are places or distribution channels and physical evidences.

Keywords: Japanese senior traveler, marketing mix, senior tourist, hotel booking

Procedia PDF Downloads 297
4633 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 458
4632 Steps toward the Support Model of Decision-Making in Hungary: The Impact of the Article 12 of the UN Convention on the Rights of Persons with Disabilities on the Hungarian National Legislation

Authors: Szilvia Halmos

Abstract:

Hungary was one of the first countries to sign and ratify the UN Convention on the Rights of Persons with Disabilities (hereinafter: CRPD). Consequently, Hungary assumed an obligation under international law to review the national law in the light of the Article 12 of the CRPD requiring the States parties to guarantee the equality of persons with disabilities in terms of legal capacity, and to replace the regimes of substitute decision-making by the instruments of supported decision-making. This article is often characterized as one of the key norms of the CRPD, since the legal autonomy of the persons with disabilities is an essential precondition of their participation in the social life on an equal basis with others, envisaged by the social paradigm of disability. This paper examines the impact of the CRPD on the relevant Hungarian national legal norms, with special focus on the relevant rules of the recently codified Civil Code. The employed research methodologies include (1) the specification of the implementation requirements imposed by the Article 12 of the CRPD, (2) the determination of the indicators of the appropriate implementation, (3) the critical analysis of compliance of the relevant Hungarian legal regulation with the indicators, (4) with respect to the relevant case law of the Hungarian Constitutional Court and ordinary courts, the European Court of Human Rights and the Committee of Rights of Persons with Disabilities and (5) to the available empirical figures on the functioning of substitute and supported decision-making regimes. It will be established that the new Civil Code has made large steps toward the equality of persons with disabilities in terms of legal capacity and the support model of decision-making by the introduction of some specific instruments of supported decision-making and the restriction of the application of guardianship. Nevertheless, the regulation currently in effect fails to represent some crucial principles of the Article 12 of the CRPD, such as the non-discrimination of persons with psycho-social disabilities, the support of the articulation of the will and preferences of the individual instead of his/her best interest in the course of decision-making. The changes in the practice of the substitute and the support model brought about by the new legal norms can also be assessed as significant, however, so far unsatisfactory. The number of registered supporters is rather low, and the preconditions of the effective functioning of the support (e.g. the proper training of the supporters) are not ensured.

Keywords: Article 12 of the UN CRPD, Hungarian law on legal capacity, persons with intellectual and psycho-social disabilities, supported decision-making

Procedia PDF Downloads 289
4631 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 168
4630 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 319
4629 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 483
4628 The Real Business Power of Virtual Reality: From Concept to Application

Authors: Svetlana Bialkova, Marnix van Gisbergen

Abstract:

Advanced Virtual Reality (VR) technologies offer compelling multisensory and interactive experiences applicable in various fields from education to entertainment. However, serious VR applications within the financial sector are scarce, and managing ‘real’ business services with(in) VR is a challenge inviting further investigation. The current research addresses this challenge, by exploring the key parameters influencing the VR business power and the development of appropriate VR applications in real financial business. We conducted profound investigation of both B2B and B2C needs, and how these could be met. In three studies, we have approached experts from leading international banks (finance to computer specialists), and their (potential) customers. Study 1 included focus group discussions with experts. First, participants could experience different VR devices such as Samsung Gear VR, then a structured discussion was held. The outcomes are analyzed and summarized in a portfolio. Study 2 further used the portfolio analyzer to profile the management of real business services with(in) VR. Again experts participated, where first being introduced with Samsung Gear, then experiencing it and being interviewed. Based on the outcomes, a survey was developed to interview (potential) customers and test ideas created (Study 3). The results suggest that developing proper system architectures to connect people and to connect devices is crucial for building up powerful business with(in) VR. From one side, connecting devices, e.g., pairing mobile Head Mounted Displays for VR with smart-phones and/or wearable technologies would be appropriate way “to have” customers anywhere, anytime with a brand and/or business. Developing VR Apps, providing detailed real time visualization of performance and infrastructure types could enable 3D VR navigation, 3D contents viewing, but also being opportunity for connecting people in collaborative platforms. The outcomes of the current research are summarized in a model which could be applied to unlock the real business power of VR.

Keywords: business power, B2B, B2C, VR applications

Procedia PDF Downloads 289
4627 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
4626 Development of a System for Fitting Clothes and Accessories Using Augmented Reality

Authors: Dinmukhamed T., Vassiliy S.

Abstract:

This article suggests the idea of fitting clothes and accessories based on augmented reality. A logical data model has been developed, taking into account the decision-making module (colors, style, type, material, popularity, etc.) based on personal data (age, gender, weight, height, leg size, hoist length, geolocation, photogrammetry, number of purchases of certain types of clothing, etc.) and statistical data of the purchase history (number of items, price, size, color, style, etc.). Also, in order to provide information to the user, it is planned to develop an augmented reality system using a QR code. This system of selection and fitting of clothing and accessories based on augmented reality will be used in stores to reduce the time for the buyer to make a decision on the choice of clothes.

Keywords: augmented reality, online store, decision-making module, like QR code, clothing store, queue

Procedia PDF Downloads 157
4625 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 100
4624 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy

Procedia PDF Downloads 155
4623 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 329
4622 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 450