Search results for: RMBTF modelling
1380 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling
Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao
Abstract:
In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis
Procedia PDF Downloads 1471379 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms
Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre
Abstract:
Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.Keywords: dynamic modelling, long term instability risks, room and pillar, seismic collapse
Procedia PDF Downloads 1381378 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow
Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen
Abstract:
Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics
Procedia PDF Downloads 1901377 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo
Abstract:
Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution
Procedia PDF Downloads 1791376 Mapping Interrelationships among Key Sustainability Drivers: A Strategic Framework for Enhanced Entrepreneurial Sustainability among MSME
Authors: Akriti Chandra, Gourav Dwivedi, Seema Sharma, Shivani
Abstract:
This study investigates the adoption of green business (GB) models within a circular economy framework (CEBM) for Micro Small and Medium Enterprise (MSME), given the rising importance of sustainable practices. The research begins by exploring the shift from linear business models towards resource-efficient, sustainable models, emphasizing the benefits of the circular economy. The study's literature review identifies 60 influential factors impacting the shift to green businesses, grouped as internal and external drivers. However, there is a research gap in examining these factors' interrelationships and operationalizing them within MSMEs. To address this gap, the study employs Total Interpretive Structural Modelling (TISM) to establish a hierarchical structure of factors influencing GB and circular economy business model (CEBM) adoption. Findings reveal that factors like green innovation and market competitiveness are particularly impactful. Using Systems Theory, which views organizations as complex adaptive systems, the study contextualizes these drivers within MSMEs, proposing a framework for a sustainable business model adoption. The study concludes with significant implications for policymakers, suggesting that the identified factors and their hierarchical relationships can guide policy formulation for a broader transition to green business practices. This work also invites further research, recommending larger, quantitative studies to empirically validate these factors and explore practical challenges in implementing CEBMs.Keywords: green business (GB), circular economy business model (CEBM), micro small and medium enterprise (MSME), total interpretive structural modelling (TISM), systems theory
Procedia PDF Downloads 121375 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”
Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin
Abstract:
Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit
Procedia PDF Downloads 3801374 Gas Flow, Time, Distance Dynamic Modelling
Authors: A. Abdul-Ameer
Abstract:
The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.Keywords: pressure, distance, flow, dissipation, models
Procedia PDF Downloads 4731373 Agent-Based Modelling to Improve Dairy-origin Beef Production: Model Description and Evaluation
Authors: Addisu H. Addis, Hugh T. Blair, Paul R. Kenyon, Stephen T. Morris, Nicola M. Schreurs, Dorian J. Garrick
Abstract:
Agent-based modeling (ABM) enables an in silico representation of complex systems and cap-tures agent behavior resulting from interaction with other agents and their environment. This study developed an ABM to represent a pasture-based beef cattle finishing systems in New Zea-land (NZ) using attributes of the rearer, finisher, and processor, as well as specific attributes of dairy-origin beef cattle. The model was parameterized using values representing 1% of NZ dairy-origin cattle, and 10% of rearers and finishers in NZ. The cattle agent consisted of 32% Holstein-Friesian, 50% Holstein-Friesian–Jersey crossbred, and 8% Jersey, with the remainder being other breeds. Rearers and finishers repetitively and simultaneously interacted to determine the type and number of cattle populating the finishing system. Rearers brought in four-day-old spring-born calves and reared them until 60 calves (representing a full truck load) on average had a live weight of 100 kg before selling them on to finishers. Finishers mainly attained weaners from rearers, or directly from dairy farmers when weaner demand was higher than the supply from rearers. Fast-growing cattle were sent for slaughter before the second winter, and the re-mainder were sent before their third winter. The model finished a higher number of bulls than heifers and steers, although it was 4% lower than the industry reported value. Holstein-Friesian and Holstein-Friesian–Jersey-crossbred cattle dominated the dairy-origin beef finishing system. Jersey cattle account for less than 5% of total processed beef cattle. Further studies to include re-tailer and consumer perspectives and other decision alternatives for finishing farms would im-prove the applicability of the model for decision-making processes.Keywords: agent-based modelling, dairy cattle, beef finishing, rearers, finishers
Procedia PDF Downloads 991372 Coastal Modelling Studies for Jumeirah First Beach Stabilization
Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal
Abstract:
Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix
Procedia PDF Downloads 2631371 Assessment of Multi-Domain Energy Systems Modelling Methods
Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell
Abstract:
Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.Keywords: CHPV, thermal storage, control, dynamic simulation
Procedia PDF Downloads 2401370 Effects of Destination Image, Perceived Value, Tourist Satisfaction and Service Quality on Destination Loyalty
Authors: Mahadzirah Mohamad, Nur Izzati Ab Ghani
Abstract:
Worldwide, tourism sustained growth and remained to be one of the fast-growing sectors. Malaysia tourism industry experienced an unstable and declining pattern of international tourist arrival’s growth rate. The situation suggested that the industry was competitive and denoted the need to study factors that influence tourist loyalty. The primary purpose of this study was to develop a model that examined how destination image, perceived value, service quality and tourist satisfaction affect destination loyalty. The study was conducted at the Kuala Lumpur International Airport and Kota Kinabalu International Airport. The respondents were international tourists from United Kingdom and Australia and they were selected using simple random sampling method. A total of 337 respondents were subjected to data analysis using structural equation modelling. The study uncovered that perceived value and destination image was highly correlated and the model suggested that these constructs should be treated as one construct. The construct was labelled as overall destination image. Overall image had significant direct effect on service quality, satisfaction and loyalty. Service quality had a significant indirect effect on loyalty through satisfaction as a moderating variable. However, satisfaction had no mediating effect on the relationship between overall destination image and loyalty. The study suggested that more efforts should be focused on portraying the image of experiencing joy with many interesting natural scenic places to see whilst on a holiday to Malaysia. In addition, the destination management office should promote tourist visiting to Malaysia would enjoy quality service related to accommodation, information facilities, health, and shopping. Tourist satisfaction empirically proved to be an important construct that influenced destination loyalty. This study contributed to the extended knowledge that postulated overall image of a destination was measured by perceived value and destination image.Keywords: destination image, destination loyalty, structural equation modelling, tourist satisfaction
Procedia PDF Downloads 3981369 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements
Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria
Abstract:
The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.Keywords: strut and tie, optimization, reinforcement, massive structure
Procedia PDF Downloads 1411368 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes
Authors: Nadarajah I. Ramesh
Abstract:
Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model
Procedia PDF Downloads 2781367 A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes
Authors: Martin Grootveld, Benita Percival, Sarah Moumtaz, Kerry L. Grootveld
Abstract:
Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.Keywords: frying oils, lipid oxidation products, frying episodes, chemometrics, principal component regression, NMR Analysis, cytotoxic/genotoxic aldehydes
Procedia PDF Downloads 1711366 Knowledge and Ontology Engineering in Continuous Monitoring of Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
The monitoring of manufacturing processes is an important issue in nowadays ERP systems. The identification and analysis of appropriate data for the units that take part in the production process are ones of the most crucial problems. In this paper, the authors introduce a new approach towards modelling the relation between production units, signals, and factors possible to obtain from the production system. The main idea for the system is based on the ontology of production units.Keywords: manufacturing operation management, OWL, ontology implementation, ontology modeling
Procedia PDF Downloads 1201365 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks
Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer
Abstract:
New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics
Procedia PDF Downloads 1391364 Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia
Authors: Inga Badasyan
Abstract:
Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake.Keywords: ecohydrological monitoring, flood risk management, global warming, aquatic macroinvertebrates
Procedia PDF Downloads 2881363 The Mechanisms of Peer-Effects in Education: A Frame-Factor Analysis of Instruction
Authors: Pontus Backstrom
Abstract:
In the educational literature on peer effects, attention has been brought to the fact that the mechanisms creating peer effects are still to a large extent hidden in obscurity. The hypothesis in this study is that the Frame Factor Theory can be used to explain these mechanisms. At heart of the theory is the concept of “time needed” for students to learn a certain curricula unit. The relations between class-aggregated time needed and the actual time available, steers and hinders the actions possible for the teacher. Further, the theory predicts that the timing and pacing of the teachers’ instruction is governed by a “criterion steering group” (CSG), namely the pupils in the 10th-25th percentile of the aptitude distribution in class. The class composition hereby set the possibilities and limitations for instruction, creating peer effects on individual outcomes. To test if the theory can be applied to the issue of peer effects, the study employs multilevel structural equation modelling (M-SEM) on Swedish TIMSS 2015-data (Trends in International Mathematics and Science Study; students N=4090, teachers N=200). Using confirmatory factor analysis (CFA) in the SEM-framework in MPLUS, latent variables are specified according to the theory, such as “limitations of instruction” from TIMSS survey items. The results indicate a good model fit to data of the measurement model. Research is still in progress, but preliminary results from initial M-SEM-models verify a strong relation between the mean level of the CSG and the latent variable of limitations on instruction, a variable which in turn have a great impact on individual students’ test results. Further analysis is required, but so far the analysis indicates a confirmation of the predictions derived from the frame factor theory and reveals that one of the important mechanisms creating peer effects in student outcomes is the effect the class composition has upon the teachers’ instruction in class.Keywords: compositional effects, frame factor theory, peer effects, structural equation modelling
Procedia PDF Downloads 1341362 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept
Authors: Igor Vishnevskyi
Abstract:
Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling
Procedia PDF Downloads 781361 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study
Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota
Abstract:
Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling
Procedia PDF Downloads 1551360 The Impact of Client Leadership, Building Information Modelling (BIM) and Integrated Project Delivery (IPD) on Construction Project: A Case Study in UAE
Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji
Abstract:
The construction industry is a multi-disciplinary and multi-national industry, which has an important role to play within the overall economy of any country. There are major challenges to an improved performance within the industry. Particularly lacking is, the ability to capture the large amounts of information generated during the life-cycle of projects and to make these available, in the right format, so that professionals can then evaluate alternative solutions based on life-cycle analysis. The fragmented nature of the industry is the main reason behind the unavailability and ill utilisation of project information. The lack of adequately engaging clients and managing their requirements contributes adversely to construction budget and schedule overruns. This is a difficult task to achieve, particularly if clients are not continuously and formally involved in the design and construction process, which means that the design intent is left to designers that may not always satisfy clients’ requirements. Client lead is strongly recognised in bringing change through better collaboration between project stakeholders. However, one of the major challenges is that collaboration is operated under conventional procurement methods, which hugely limit the stakeholders’ roles and responsibilities to bring about the required level of collaboration. A research has been conducted with a typical project in the UAE. A qualitative research work was conducted including semi-structured interviews with project partners to discover the real reasons behind this delay. The case study also investigated the real causes of the problems and if they can be adequately addressed by BIM and IPD. Special focus was also placed on the Client leadership and the role the Client can play to eliminate/minimize these problems. It was found that part of the ‘key elements’ from which the problems exist can be attributed to the client leadership and the collaborative environment and BIM.Keywords: client leadership, building information modelling (BIM), integrated project delivery (IPD), case study
Procedia PDF Downloads 3231359 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 1711358 A Framework for Building Information Modelling Execution Plan in the Construction Industry, Lagos State, Nigeria
Authors: Tosin Deborah Akanbi
Abstract:
The Building Information Modeling Execution Plan (BEP) is a document that manifests the specifications for the adoption and execution of building information modeling in the construction sector in an organized manner so as to attain the listed goals. In this regard, the study examined the barriers to the adoption of building information modeling, evaluated the effect of building information modeling adoption characteristics on the key elements of a building information modeling execution plan and developed a strategic framework for a BEP in the Lagos State construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results showed the significant relationships and connections between the variables in the framework: BIM usage and model quality control (aBIMskill -> dMQ, Beta = 0.121, T statistics = 1.829), BIM adoption characteristics and information exchange (bBIM_CH -> dIE, Beta = 0.128, T statistics = 1.727), BIM adoption characteristics and process design (bBIM_CH -> dPD, Beta = 0.170, T statistics = 2.754), BIM adoption characteristics and roles and responsibilities (bBIM_CH -> dRR, Beta = 0.131, T statistics = 2.181), interest BIM barriers and BIM adoption characteristics (cBBIM_INT -> bBIM_CH, Beta = 0.137, T statistics = 2.309), legal BIM barriers and BIM adoption characteristics (cBBIM_LEG -> bBIM_CH, Beta = 0.168, T statistics = 2.818), professional BIM barriers and BIM adoption characteristics (cBBIM_PRO -> bBIM_CH, Beta = 0.152, T statistics = 2.645). The results also revealed that seven final themes were generated, namely: model structure and process design, BIM information exchange and collaboration procedures, project goals and deliverables, project model quality control, roles and responsibilities, reflect Lagos state construction industry and validity of the BEP framework. Thus, there is a need for the policy makers to direct interventions to promote, encourage and support the understanding and adoption of BIM by emphasizing the various benefits of using the technology in the Lagos state construction industry.Keywords: building information modelling execution plan, BIM adoption characteristics, BEP framework, construction industry
Procedia PDF Downloads 171357 Polymer Mixing in the Cavity Transfer Mixer
Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson
Abstract:
In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.Keywords: Mixing, non-Newtonian fluids, polymers, rheology.
Procedia PDF Downloads 3791356 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus
Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson
Abstract:
Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation
Procedia PDF Downloads 1151355 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 1571354 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)
Authors: Lokesh Harshe
Abstract:
The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED
Procedia PDF Downloads 541353 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete
Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml
Abstract:
Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic
Procedia PDF Downloads 1571352 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments
Authors: Xiaoqin Wang, Li Yin
Abstract:
Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.Keywords: causal effect, point effect, statistical modelling, sequential causal inference
Procedia PDF Downloads 2051351 On the Mathematical Modelling of Aggregative Stability of Disperse Systems
Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov
Abstract:
The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model
Procedia PDF Downloads 309