Search results for: expanded invasive weed optimization algorithm (exIWO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7303

Search results for: expanded invasive weed optimization algorithm (exIWO)

2953 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 162
2952 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing

Authors: Yu Li, Jingwu He, Yuexi Xiong

Abstract:

The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.

Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars

Procedia PDF Downloads 327
2951 Crossing of the Intestinal Barrier Thanks to Targeted Biologics: Nanofitins

Authors: Solene Masloh, Anne Chevrel, Maxime Culot, Leonardo Scapozza, Magali Zeisser-Labouebe

Abstract:

The limited stability of clinically proven therapeutic antibodies limits their administration by the parenteral route. However, oral administration remains the best alternative as it is the most convenient and less invasive one. Obtaining a targeted treatment based on biologics, which can be orally administered, would, therefore, be an ideal situation to improve patient adherence and compliance. Nevertheless, the delivery of macromolecules through the intestine remains challenging because of their sensitivity to the harsh conditions of the gastrointestinal tract and their low permeability across the intestinal mucosa. To address this challenge, this project aims to demonstrate that targeting receptor-mediated endocytosis followed by transcytosis could maximize the intestinal uptake and transport of large molecules, such as Nanofitins. These affinity proteins of 7 kDa with binding properties similar to antibodies have already demonstrated retained stability in the digestive tract and local efficiency. However, their size does not allow passive diffusion through the intestinal barrier. Nanofitins having a controlled affinity for membrane receptors involved in the transcytosis mechanism used naturally for the transport of large molecules in humans were generated. Proteins were expressed using ribosome display and selected based on affinity to the targeted receptor and other characteristics. Their uptake and transport ex vivo across viable porcine intestines were investigated using an Ussing chambers system. In this paper, we will report the results achieved while addressing the different challenges linked to this study. To validate the ex vivo model, first, we proved the presence of the receptors targeted in humans on the porcine intestine. Then, after the identification of an optimal way of detection of Nanofitins, transport experiments were performed on porcine intestines with viability followed during the time of the experiment. The results, showing that the physiological process of transcytosis is capable of being triggered by the binding of Nanofitins on their target, will be reported here. In conclusion, the results show that Nanofitins can be transported across the intestinal barrier by triggering the receptor-mediated transcytosis and that the ex vivo model is an interesting technique to assess biologics absorption through the intestine.

Keywords: ex-vivo, Nanofitins, oral administration, transcytosis

Procedia PDF Downloads 185
2950 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 514
2949 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process

Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri

Abstract:

Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.

Keywords: automotive, performance, reliability, RAM, fluid filling process

Procedia PDF Downloads 357
2948 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 132
2947 Creating an Inclusive Classroom: Country Case Studies Analysis on Mainstream Teachers’ Teaching-Efficacy and Attitudes towards Inclusive Education in Japan and Singapore

Authors: Yei Mian Adrian Yap

Abstract:

How we idealize the regular schools to be inclusive as much as possible hinges on mainstream teachers’ attitudes and teaching-efficacy towards the inclusion of students with special needs in the regular schools. This research studies the Japanese and Singaporean mainstream teachers’ attitudes and teaching-efficacy towards the inclusion of students with special needs in the regular classrooms by investigating what key variables influence their attitudes and teaching-efficacy and how they strategize to address their challenges to include their students with special needs in their regular classrooms. In order to understand the nature of teachers’ attitudes and teaching-efficacy towards the inclusive education, a mixed-method research methodology was carried out in Japan and Singapore; it involved an explanatory sequential method of employing quantitative research first before qualitative research. In the quantitative research, 189 Japanese and 183 Singaporean teachers were invited to participate in the questionnaires and out of these participants, 38 Japanese and 15 Singaporean teachers shared their views during their semi-structured interviews. Based on the empirical findings, Japanese teachers’ attitudes and teaching-efficacy were more likely to be influenced by their experiences in teaching students with special needs, knowledge about disability legislation, presence of their disabled family members and level of confidence to teach students with special needs. On the other hand, Singaporean teachers’ attitudes and teaching-efficacy were affected by gender, educational level, received trainings in special needs education, knowledge about disability legislation and level of confidence to teach students with special needs. Both country results also demonstrated that there was a positive correlation between their teaching-efficacy and attitude. Narrative findings further expanded the reasons behind these quantitative factors that shaped teachers’ attitudes and teaching-efficacy. Also it discussed the various problems faced by Japanese and Singaporean teachers and how they identified their coping strategies to circumvent their challenges in including their students with special needs in their regular classrooms. The significance of this research manifests in necessary educational reforms in both countries especially in the context of inclusive education. These findings may not be as definitive as expected but it is believed that it could provide useful information on the current situation about teachers’ concerns towards the inclusive education. In conclusion, this research could potentially make its positive contribution to the body of literature on teachers’ attitudes and teaching-efficacy in the context of Asian developed countries and these findings could posit that regular teachers’ positive attitudes and strong sense of teaching self-efficacy could directly improve the success rate of inclusion of students with special needs in the regular classrooms.

Keywords: attitudes, inclusive education, special education, teaching-efficacy

Procedia PDF Downloads 347
2946 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 490
2945 Recommendations to Improve Classification of Grade Crossings in Urban Areas of Mexico

Authors: Javier Alfonso Bonilla-Chávez, Angélica Lozano

Abstract:

In North America, more than 2,000 people annually die in accidents related to railroad tracks. In 2020, collisions at grade crossings were the main cause of deaths related to railway accidents in Mexico. Railway networks have constant interaction with motor transport users, cyclists, and pedestrians, mainly in grade crossings, where is the greatest vulnerability and risk of accidents. Usually, accidents at grade crossings are directly related to risky behavior and non-compliance with regulations by motorists, cyclists, and pedestrians, especially in developing countries. Around the world, countries classify these crossings in different ways. In Mexico, according to their dangerousness (high, medium, or low), types A, B and C have been established, recommending for each one different type of auditive and visual signaling and gates, as well as horizontal and vertical signaling. This classification is based in a weighting, but regrettably, it is not explained how the weight values were obtained. A review of the variables and the current approach for the grade crossing classification is required, since it is inadequate for some crossings. In contrast, North America (USA and Canada) and European countries consider a broader classification so that attention to each crossing is addressed more precisely and equipment costs are adjusted. Lack of a proper classification, could lead to cost overruns in the equipment and a deficient operation. To exemplify the lack of a good classification, six crossings are studied, three located in the rural area of Mexico and three in Mexico City. These cases show the need of: improving the current regulations, improving the existing infrastructure, and implementing technological systems, including informative signals with nomenclature of the involved crossing and direct telephone line for reporting emergencies. This implementation is unaffordable for most municipal governments. Also, an inventory of the most dangerous grade crossings in urban and rural areas must be obtained. Then, an approach for improving the classification of grade crossings is suggested. This approach must be based on criteria design, characteristics of adjacent roads or intersections which can influence traffic flow through the crossing, accidents related to motorized and non-motorized vehicles, land use and land management, type of area, and services and economic activities in the zone where the grade crossings is located. An expanded classification of grade crossing in Mexico could reduce accidents and improve the efficiency of the railroad.

Keywords: accidents, grade crossing, railroad, traffic safety

Procedia PDF Downloads 113
2944 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City

Authors: Khadija Raissi, Bechir Ben Gouissem

Abstract:

In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.

Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3

Procedia PDF Downloads 302
2943 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 162
2942 Evaluating the Performance of Color Constancy Algorithm

Authors: Damanjit Kaur, Avani Bhatia

Abstract:

Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.

Keywords: color constancy, gray world, white patch, modified white patch

Procedia PDF Downloads 324
2941 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study

Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi

Abstract:

Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.

Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization

Procedia PDF Downloads 591
2940 The Effectiveness of Kinesio Taping in Enhancing Early Post-Operative Outcomes Inpatients after Total Knee Replacement or Anterior Cruciate Ligament Reconstruction

Authors: B. A. Alwahaby

Abstract:

Background: The number of Total Knee Replacement (TKR) and Anterior Cruciate Ligament Reconstruction (ACLR) performed every year is increasing. The main aim of physiotherapy early recovery rehabilitation after these surgeries is to control pain and edema and regain Range of Motion (ROM) and physical activity. All of these outcomes need to be managed by safe and effective modalities. Kinesiotaping (KT) is an elastic non-invasive therapeutic tape that has become recognised in different physiotherapy situation as injury prevention, rehabilitation, and performance enhancement and been used with different conditions. However, there is still clinical doubt regarding the effectiveness of KT due to inconclusive supporting evidence. The aim of this systematic review is to collate all the available evidence on the effectiveness of KT in the early rehabilitation of ACLR and TKR patients and analyse whether the use of KT combined with standard rehabilitation would facilitate recovery of postoperative outcome than standard rehabilitation alone. Methodology: A systematic review was conducted. Medline, EMBASE, Scopus, AMED PEDro, CINAHL, and Web of Science databases were searched. Each study was assessed for inclusion and methodological quality appraisal was undertaken by two reviewers using the JBI critical appraisal tools. The studies were then synthesised qualitatively due to heterogeneity between studies. Results: Five moderate to low quality RCTs were located. All five studies demonstrated statistically significant improvements in pain, swelling, ROM, and functional outcomes (p < 0.05). Between group comparison, KT combined with standardised rehabilitation were shown to be significantly more effective than standardised rehabilitation alone for pain and swelling (p < 0.05). However, there were inconstant findings for ROM, and no statistically significant differences reported between groups for functional outcomes (p > 0.05). Conclusion: Research in the area is generally low quality; however, there is consistent evidence to support the use of KT combined with standardised post-operative rehabilitation for reducing pain and swelling. There is also some evidence that KT may be effective in combination with standardised rehabilitation to regain knee extension ROM faster than standardised rehabilitation alone, but further primary research is required to confirm this.

Keywords: anterior cruciate ligament reconstruction, ACLR, kinesio taping, KT, postoperative, total knee replacement, TKR

Procedia PDF Downloads 127
2939 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array

Authors: Meiling Yang, Shuguo Xie, Yilong Zhu

Abstract:

Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.

Keywords: virtual antenna array, DOA, localization, far field

Procedia PDF Downloads 377
2938 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm

Authors: Vahid Bayrami Rad

Abstract:

Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.

Keywords: arduino board, artificial intelligence, image processing, solenoid lock

Procedia PDF Downloads 71
2937 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 56
2936 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 90
2935 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction

Authors: M. Jebali, M. Jemni

Abstract:

This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.

Keywords: HCI, sign language recognition, object tracking, hand segmentation

Procedia PDF Downloads 415
2934 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness

Authors: Kirill Trapezon, Alexandr Trapezon

Abstract:

A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.

Keywords: vibrations, plate, method of symmetries, differential equation, factorization, approximation

Procedia PDF Downloads 268
2933 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing, side channel analysis

Procedia PDF Downloads 432
2932 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model

Procedia PDF Downloads 317
2931 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 135
2930 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 68
2929 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters

Authors: Sahar Mobeen, Anam Rafique, Irum Baig

Abstract:

Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.

Keywords: LMS, LLMS, NLMS, AFA, ANLLMS

Procedia PDF Downloads 569
2928 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production

Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser

Abstract:

The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.

Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production

Procedia PDF Downloads 537
2927 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 309
2926 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 62
2925 Optimal Delivery of Two Similar Products to N Ordered Customers

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering products located at a central depot to customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from the depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity of the goods that must be delivered. In the present work, we present a specific capacitated stochastic vehicle routing problem which has realistic applications to distributions of materials to shops or to healthcare facilities or to military units. A vehicle starts its route from a depot loaded with items of two similar but not identical products. We name these products, product 1 and product 2. The vehicle must deliver the products to N customers according to a predefined sequence. This means that first customer 1 must be serviced, then customer 2 must be serviced, then customer 3 must be serviced and so on. The vehicle has a finite capacity and after servicing all customers it returns to the depot. It is assumed that each customer prefers either product 1 or product 2 with known probabilities. The actual preference of each customer becomes known when the vehicle visits the customer. It is also assumed that the quantity that each customer demands is a random variable with known distribution. The actual demand is revealed upon the vehicle’s arrival at customer’s site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed during its route to return to the depot to restock with quantities of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. If there is shortage for the desired product, it is permitted to deliver the other product at a reduced price. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the expected total cost among all possible strategies. It is possible to find the optimal routing strategy using a suitable stochastic dynamic programming algorithm. It is also possible to prove that the optimal routing strategy has a specific threshold-type structure, i.e. it is characterized by critical numbers. This structural result enables us to construct an efficient special-purpose dynamic programming algorithm that operates only over those routing strategies having this structure. The findings of the present study lead us to the conclusion that the dynamic programming method may be a very useful tool for the solution of specific vehicle routing problems. A problem for future research could be the study of a similar stochastic vehicle routing problem in which the vehicle instead of delivering, it collects products from ordered customers.

Keywords: collection of similar products, dynamic programming, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 269
2924 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 247