Search results for: passive optical networks (PONs)
840 The Teaching and Learning Process and Information and Communication Technologies from the Remote Perspective
Authors: Rosiris Maturo Domingues, Patricia Luissa Masmo, Cibele Cavalheiro Neves, Juliana Dalla Martha Rodriguez
Abstract:
This article reports the experience of the pedagogical consultants responsible for the curriculum development of Senac São Paulo courses when facing the emergency need to maintain the pedagogical process in their schools in the face of the Covid-19 pandemic. The urgent adjustment to distance education resulted in the improvement of the process and the adoption of new teaching and learning strategies mediated by technologies. The processes for preparing and providing guidelines for professional education courses were also readjusted. Thus, a bank of teaching-learning strategies linked to digital resources was developed, categorized, and identified by their didactic-pedagogical potential, having as an intersection didactic planning based on learning objectives based on Bloom's taxonomy (revised), given its convergence with the competency approach adopted by Senac. Methodologically, a relationship was established between connectivity and digital networks and digital evolution in school environments, culminating in new paradigms and processes of educational communication and new trends in teaching and learning. As a result, teachers adhered to the use of digital tools in their practices, transposing face-to-face classroom methodologies and practices to online media, whose criticism was the use of ICTs in an instrumental way, reducing methodologies and practices to teaching only transmissive. There was recognition of the insertion of technology as a facilitator of the educational process in a non-palliative way and the development of a web curriculum, now and fully, carried out in contexts of ubiquity.Keywords: technologies, education, teaching-learning strategies, Bloom taxonomy
Procedia PDF Downloads 88839 A Research on the Coordinated Development of Chengdu-Chongqing Economic Circle under the Background of New Urbanization
Authors: Deng Tingting
Abstract:
The coordinated and integrated development of regions is an inevitable requirement for China to move towards high-quality, sustainable development. As one of the regions with the best economic foundation and the strongest economic strength in western China, it is a typical area with national importance and strong network connection characteristics in terms of the comprehensive effect of linking the inland hinterland and connecting the western and national urban networks. The integrated development of the Chengdu-Chongqing economic circle is of great strategic significance for the rapid and high-quality development of the western region. In the context of new urbanization, this paper takes 16 urban units within the economic circle as the research object, based on the 5-year panel data of population, regional economy, and spatial construction and development from 2016 to 2020, using the entropy method and Theil index to analyze the three target layers, and cause analysis. The research shows that there are temporal and spatial differences in the Chengdu-Chongqing economic circle, and there are significant differences between the core city and the surrounding cities. Therefore, by reforming and innovating the regional coordinated development mechanism, breaking administrative barriers, and strengthening the "polar nucleus" radiation function to release the driving force for economic development, especially in the gully areas of economic development belts, not only promote the coordinated development of internal regions but also promote the coordinated and sustainable development of the western region and take a high-quality development path.Keywords: Chengdu-Chongqing economic circle, new urbanization, coordinated regional development, Theil Index
Procedia PDF Downloads 117838 Fitness Apparel and Body Cathexis of Women Consumers When and after Using Virtual Fitting Room
Authors: Almas Athif Fathin Wiyantoro, Fransiskus Xaverius Ivan Budiman, Fithra Faisal Hastiadi
Abstract:
The growth of clothing and technology as a marketing tool has a great influence on online business owners to know how much the characteristics and psychology of consumers in influencing purchasing decisions made by Indonesian women consumers. One of the most important issues faced by Indonesian women consumers is the suitability of clothing. The suitability of clothing can affect the body cathexis, identity, and confidence. So the thematic analysis of clothing fitness and body cathexis of women consumers when and after using virtual fitting room technology to purchase decision is important to do. This research using group method of pre-post treatment and considers how the recruitment technique of snowball sampling, which uses interpersonal relations and connections between people, both includes and excludes individuals into 39 participants' social networks to access specific populations. The results obtained from the study that the results of body scans and photos of virtual fitting room results can be made an intervention in women consumers in assessing their body cathexis objectively in the process of making purchasing decisions. The study also obtained a regression equation Y = 0.830 + 0.290X1 + 0.292X2, showing a positive relationship between suitability of clothing and body cathexis which influenced purchasing decisions on women consumers and after (personal and psychological factors) using virtual fitting room, meaning that all independent variables influence Positive towards the purchasing decision of the women consumers.Keywords: body cathexis, clothing fitness, purchasing decision making and virtual fitting room
Procedia PDF Downloads 213837 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 141836 Choosing the Lesser Evil: Tribal Alignment Formation in Civil Wars
Authors: Busra Nur Ozguler Aktel
Abstract:
This research aims to understand the factors that affect the ways in which tribes perceive and respond to violent conflicts in fragile states, given that tribes are essential stakeholders in many conflict-ridden fragile states, whether Afghanistan, Iraq, Syria, Libya, Somalia, Nigeria, or Yemen. It explores the primary questions of why some tribes align with extremist groups while others align with states during civil wars and why some tribes switch alignments. It argues that tribes form and switch alignments based on their perception of threats to their traditional tribal structure (internal dynamics) and clientelist relationships (external dynamics). Put differently; threat perceptions lead them to choose either the state or extremist groups that will more likely secure their traditional structure and patronage networks. This study focuses on Iraqi tribes as a case study. It builds a theory of tribal alignment formation based on ethnographic fieldwork in the Middle East, with a particular focus on Iraqi Sunni tribes living in the Kurdish region of Iraq and Jordan. As a result of the interviews with tribal leaders and members, local journalists, researchers, and politicians, it concludes that complex (re)alignments of tribes can determine the course and outcome of the conflicts, either mitigating or escalating violence. This study contributes to the larger body of conflict management and peacebuilding literature by introducing tribes as non-state actors and exploring their interactions with other actors in civil wars.Keywords: civil wars, tribes, alignment formation, side-switching, Iraq
Procedia PDF Downloads 87835 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 24834 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 479833 Designing Electrically Pumped Photonic Crystal Surface Emitting Lasers Based on a Honeycomb Nanowire Pattern
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Photonic crystal surface emitting lasers (PCSELs) has recently become an area of active research because of the advantages these lasers have over the edge emitting lasers and vertical cavity surface emitting lasers (VCSELs). PCSELs can emit laser beams with high power (from the order of few milliwatts to Watts or even tens of Watts) which scales with the emission area while maintaining single mode operation even at large emission areas. Most PCSELs reported in the literature are air-hole based, with only few demonstrations of nanowire based PCSELs. We previously reported an optically pumped, nanowire based PCSEL operating in the O band by using the honeycomb lattice. The nanowire based PCSELs have the advantage of being able to grow on silicon platform without threading dislocations. It is desirable to extend their operating wavelength to C band to open more applications including eye-safe sensing, lidar and long haul optical communications. In this work we first analyze how the lattice constant , nanowire diameter, nanowire height and side length of the hexagon in the honeycomb pattern can be changed to increase the operating wavelength of the honeycomb based PCSELs to the C band. Then as an attempt to make our device electrically pumped, we present the finite-difference time-domain (FDTD) simulation results with metals on the nanowire. The results for different metals on the nanowire are presented in order to choose the metal which gives the device with the best quality factor. The metals under consideration are those which form good ohmic contact with p-type doped InGaAs with low contact resistivity and decent sticking coefficient to the semiconductor. Such metals include Tungsten, Titanium, Palladium and Platinum. Using the chosen metal we demonstrate the impact of thickness of the metal for a given nanowire height on the quality factor of the device. We also investigate how the height of the nanowire affects the quality factor for a fixed thickness of the metal. Finally, the main steps in making the practical device are discussed.Keywords: designing nanowire PCSEL, designing PCSEL on silicon substrates, low threshold nanowire laser, simulation of photonic crystal lasers.
Procedia PDF Downloads 12832 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 143831 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 102830 Social Distancing as a Population Game in Networked Social Environments
Authors: Zhijun Wu
Abstract:
While social living is considered to be an indispensable part of human life in today's ever-connected world, social distancing has recently received much public attention on its importance since the outbreak of the coronavirus pandemic. In fact, social distancing has long been practiced in nature among solitary species and has been taken by humans as an effective way of stopping or slowing down the spread of infectious diseases. A social distancing problem is considered for how a population, when in the world with a network of social sites, decides to visit or stay at some sites while avoiding or closing down some others so that the social contacts across the network can be minimized. The problem is modeled as a population game, where every individual tries to find some network sites to visit or stay so that he/she can minimize all his/her social contacts. In the end, an optimal strategy can be found for everyone when the game reaches an equilibrium. The paper shows that a large class of equilibrium strategies can be obtained by selecting a set of social sites that forms a so-called maximal r-regular subnetwork. The latter includes many well-studied network types, which are easy to identify or construct and can be completely disconnected (with r = 0) for the most-strict isolation or allow certain degrees of connectivity (with r > 0) for more flexible distancing. The equilibrium conditions of these strategies are derived. Their rigidity and flexibility are analyzed on different types of r-regular subnetworks. It is proved that the strategies supported by maximal 0-regular subnetworks are strictly rigid, while those by general maximal r-regular subnetworks with r > 0 are flexible, though some can be weakly rigid. The proposed model can also be extended to weighted networks when different contact values are assigned to different network sites.Keywords: social distancing, mitigation of spread of epidemics, populations games, networked social environments
Procedia PDF Downloads 133829 The Role of Information Technology in Supply Chain Management
Authors: V. Jagadeesh, K. Venkata Subbaiah, P. Govinda Rao
Abstract:
This paper explaining about the significance of information technology tools and software packages in supply chain management (SCM) in order to manage the entire supply chain. Managing materials flow and financial flow and information flow effectively and efficiently with the aid of information technology tools and packages in order to deliver right quantity with right quality of goods at right time by using right methods and technology. Information technology plays a vital role in streamlining the sales forecasting and demand planning and Inventory control and transportation in supply networks and finally deals with production planning and scheduling. It achieves the objectives by streamlining the business process and integrates within the enterprise and its extended enterprise. SCM starts with customer and it involves sequence of activities from customer, retailer, distributor, manufacturer and supplier within the supply chain framework. It is the process of integrating demand planning and supply network planning and production planning and control. Forecasting indicates the direction for planning raw materials in order to meet the production planning requirements. Inventory control and transportation planning allocate the optimal or economic order quantity by utilizing shortest possible routes to deliver the goods to the customer. Production planning and control utilize the optimal resources mix in order to meet the capacity requirement planning. The above operations can be achieved by using appropriate information technology tools and software packages for the supply chain management.Keywords: supply chain management, information technology, business process, extended enterprise
Procedia PDF Downloads 376828 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics
Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat
Abstract:
CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.Keywords: nanocrystals, CuInSe, thin film, optical properties
Procedia PDF Downloads 154827 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings
Authors: Michalis Michael, Mauro Overend
Abstract:
Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort
Procedia PDF Downloads 64826 A Survey of WhatsApp as a Tool for Instructor-Learner Dialogue, Learner-Content Dialogue, and Learner-Learner Dialogue
Authors: Ebrahim Panah, Muhammad Yasir Babar
Abstract:
Thanks to the development of online technology and social networks, people are able to communicate as well as learn. WhatsApp is a popular social network which is growingly gaining popularity. This app can be used for communication as well as education. It can be used for instructor-learner, learner-learner, and learner-content interactions; however, very little knowledge is available on these potentials of WhatsApp. The current study was undertaken to investigate university students’ perceptions of WhatsApp used as a tool for instructor-learner dialogue, learner-content dialogue, and learner-learner dialogue. The study adopted a survey approach and distributed the questionnaire developed by Google Forms to 54 (11 males and 43 females) university students. The obtained data were analyzed using SPSS version 20. The result of data analysis indicates that students have positive attitudes towards WhatsApp as a tool for Instructor-Learner Dialogue: it easy to reach the lecturer (4.07), the instructor gives me valuable feedback on my assignment (4.02), the instructor is supportive during course discussion and offers continuous support with the class (4.00). Learner-Content Dialogue: WhatsApp allows me to academically engage with lecturers anytime, anywhere (4.00), it helps to send graphics such as pictures or charts directly to the students (3.98), it also provides out of class, extra learning materials and homework (3.96), and Learner-Learner Dialogue: WhatsApp is a good tool for sharing knowledge with others (4.09), WhatsApp allows me to academically engage with peers anytime, anywhere (4.07), and we can interact with others through the use of group discussion (4.02). It was also found that there are significant positive correlations between students’ perceptions of Instructor-Learner Dialogue (ILD), Learner-Content Dialogue (LCD), Learner-Learner Dialogue (LLD) and WhatsApp Application in classroom. The findings of the study have implications for lectures, policy makers and curriculum developers.Keywords: instructor-learner dialogue, learners-contents dialogue, learner-learner dialogue, whatsapp application
Procedia PDF Downloads 158825 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique
Authors: Pavana Basavakumar, Devadas Bhat
Abstract:
Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes
Procedia PDF Downloads 323824 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric
Procedia PDF Downloads 418823 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds
Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine
Abstract:
The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits
Procedia PDF Downloads 81822 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques
Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara
Abstract:
In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN
Procedia PDF Downloads 79821 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics
Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado
Abstract:
The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F
Procedia PDF Downloads 500820 Behavioral Response of Dogs to Interior Environment: An Exploratory Study on Design Parameters for Designing Dog Boarding Centers in Indian Context
Authors: M. R. Akshaya, Veena Rao
Abstract:
Pet population in India is increasing phenomenally owing to the changes in urban lifestyle with increasing number of single professionals, single parents, delayed parenthood etc. The animal companionship as a means of reducing stress levels, deriving emotional support, and unconditional love provided by dogs are a few reasons attributed for increasing pet ownership. The consequence is the booming of the pet care products and dog care centers catering to the different requirements of rearing the pets. Dog care centers quite popular in tier 1 metros of India cater to the requirement of the dog owners providing space for the dogs in absence of the owner. However, it is often reported that the absence of the owner leads to destructive and exploratory behavior issues; the main being the anxiety disorders. In the above context, it becomes imperative for a designer to design dog boarding centers that help in reducing the separation anxiety in dogs keeping in mind the different interior design parameters. An exploratory research with focus group discussion is employed involving a group of dog owners, behaviorists, proprietors of day care as well as boarding centers, and veterinarians to understand their perception on the significance of different interior parameters of color, texture, ventilation, aroma therapy and acoustics as a means of reducing the stress levels in dogs sent to the boarding centers. The data collected is organized as thematic networks thus enabling the listing of the interior design parameters that needs to be considered in designing dog boarding centers.Keywords: behavioral response, design parameters, dog boarding centers, interior environment
Procedia PDF Downloads 203819 FRATSAN: A New Software for Fractal Analysis of Signals
Authors: Hamidreza Namazi
Abstract:
Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 466818 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers
Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole
Abstract:
Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing
Procedia PDF Downloads 131817 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 69816 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy
Authors: Haile F. Darge, Hsieh C. Tsai
Abstract:
The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel
Procedia PDF Downloads 132815 The Role of Moroccan Salafist Radicalism in Creating Threat to Spain’s Security
Authors: Stanislaw Kosmynka
Abstract:
Although the genesis of the activity of fighting salafist radicalism in Spain dates back to the 80’s, the development of extremism of this kind manifested itself only in the next decade. Its first permanently functioning structures in this country in the second half of 90’s of 20th century came from Algieria and Syria. At the same time it should be emphasized that this distinction is in many dimensions conventional, the more so because they consisted also of immigrants from other coutries of Islam, particularly from Morocco. The paper seeks to understand the radical salafist challenge for Spain in the context of some terrorist networks consisted of immigrants from Morocco. On the eve of the new millennium Moroccan jihadists played an increasingly important role. Although the activity of these groups had for many years mainly logistical and propaganda character, the bomb attack carried out on 11 March 2004 in Madrid constituted an expression of open forms of terrorism, directed against the authorities and society of Spain and reflected the narration of representatives of the trend of the global jihad. The people involved in carrying out that act of violence were to a large extent Moroccan immigrants; also in the following years among the cells of radicals in Spain Moroccans stood out many times. That is why the forms and directions of activity of these extremists in Spain, also after 11th March 2004 and in the actual context of the impact of Islamic State, are worth presenting. The paper is focused on threats to the security of Spain and the region and remains connected with the issues of mutual relations of the society of a host country with immigrant communities which to a large degree come from this part of Maghreb.Keywords: jihadi terrorism, Morocco, radical salafism, security, Spain, terrorist cells, threat
Procedia PDF Downloads 525814 Lost Maritime Culture in the Netherlands: Linking Material and Immaterial Datasets for a Modern Day Perception of the Late Medieval Maritime Cultural Landscape of the Zuiderzee Region
Authors: Y. T. van Popta
Abstract:
This paper focuses on the never thoroughly examined yet in native relevant late medieval maritime cultural landscape of the former Zuiderzee (A.D. 1170-1932) in the center part of the Netherlands. Especially the northeastern part of the region, nowadays known as the Noordoostpolder, testifies of the dynamic battle of the Dutch against the water. This highly dynamic maritime region developed from a lake district into a sea and eventually into a polder. By linking physical and cognitive datasets from the Noordoostpol-der region in a spatial environment, new information on a late medieval maritime culture is brought to light, giving the opportunity to: (i) create a modern day perception on the late medieval maritime cultural landscape of the region and (ii) to underline the value of interdisciplinary and spatial research in maritime archaeology in general. Since the large scale reclamations of the region (A.D. 1932-1968), many remains have been discovered of a drowned and eroded late medieval maritime culture, represented by lost islands, drowned settlements, cultivated lands, shipwrecks and socio-economic networks. Recent archaeological research has proved the existence of this late medieval maritime culture by the discovery of the remains of the drowned settlement Fenehuysen (Veenhuizen) and its surroundings. The fact that this settlement and its cultivated surroundings remained hidden for so long proves that a large part of the maritime cultural landscape is ‘invisible’ and can only be found by extensive interdisciplinary research.Keywords: drowned settlements, late middle ages, lost islands, maritime cultural landscape, the Netherlands
Procedia PDF Downloads 212813 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 449812 Re-Envisioning Modernity: Transformations of Postwar Suburban Landscapes
Authors: Shannon Clayton
Abstract:
In an effort to explore the potential transformation of North American postwar suburbs, this M.Arch thesis actively engages in the ongoing critique of modernism from the mid 20th century to the present. Contemporary urban design practice has emerged out of the reaction to orthodox modernism. Typically, new suburban development falls into one of two strategies; an attempt to replicate pre-war fabric that never existed, or a reliance on high-density to create instant urbanism. In both cases, the critical role of architecture has been grossly undervalued. Ironically, it is the denial of suburbia’s inherent modernity that has served to prevent genuine place-making. As history demonstrates, modernism is not antithetical to architecture and place. In the postwar years, a critical discussion emerged amongst architects, which sought to evolve modernism beyond functionalism. This was demonstrated through critical discussions on image, experience, and monumentality. As well as increased interest in civic space, and investigations into mat urbanism and the megastructure. The undercurrent within these explorations was a belief that the scale and complexity of modern development could become an opportunity to create urbanism, rather than squander it. This critical discourse has continued through architectural work in the Netherlands and Denmark since the early 1990s, where an emphasis on visual variety, human scale, and public interaction has been given high priority. This thesis applies principles from this ongoing dialogue, and identifies hidden potential within existing North American suburban networks. As a result, the project re-evaluates the legacy of the master plan from a contemporary perspective.Keywords: urbanism, modernism, suburbia, place-making
Procedia PDF Downloads 251811 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 407