Search results for: vibration signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1711

Search results for: vibration signals

1321 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows

Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.

Keywords: central region, rod bundles, transient void fraction, two-phase flow

Procedia PDF Downloads 185
1320 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades

Authors: Abdullah Alnutayfat, Alexander Sutin

Abstract:

One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).

Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation

Procedia PDF Downloads 85
1319 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis

Authors: Lokanath Barik, Abinash Kumar Swain

Abstract:

This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.

Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA

Procedia PDF Downloads 82
1318 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications

Authors: Chia-Ju Peng, Shih-Jui Chen

Abstract:

This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.

Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation

Procedia PDF Downloads 391
1317 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 123
1316 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
1315 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 176
1314 Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle

Authors: Sridhar S, Govinda Raj Mandela, Aruna Mangalpady

Abstract:

In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study.

Keywords: low profile dump trucks, hand arm vibrations, exposure action value, underground mines

Procedia PDF Downloads 131
1313 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 297
1312 Non-Parametric Changepoint Approximation for Road Devices

Authors: Loïc Warscotte, Jehan Boreux

Abstract:

The scientific literature of changepoint detection is vast. Today, a lot of methods are available to detect abrupt changes or slight drift in a signal, based on CUSUM or EWMA charts, for example. However, these methods rely on strong assumptions, such as the stationarity of the stochastic underlying process, or even the independence and Gaussian distributed noise at each time. Recently, the breakthrough research on locally stationary processes widens the class of studied stochastic processes with almost no assumptions on the signals and the nature of the changepoint. Despite the accurate description of the mathematical aspects, this methodology quickly suffers from impractical time and space complexity concerning the signals with high-rate data collection, if the characteristics of the process are completely unknown. In this paper, we then addressed the problem of making this theory usable to our purpose, which is monitoring a high-speed weigh-in-motion system (HS-WIM) towards direct enforcement without supervision. To this end, we first compute bounded approximations of the initial detection theory. Secondly, these approximating bounds are empirically validated by generating many independent long-run stochastic processes. The abrupt changes and the drift are both tested. Finally, this relaxed methodology is tested on real signals coming from a HS-WIM device in Belgium, collected over several months.

Keywords: changepoint, weigh-in-motion, process, non-parametric

Procedia PDF Downloads 78
1311 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 454
1310 Modeling of a Pendulum Test Including Skin and Muscles under Compression

Authors: M. J. Kang, Y. N. Jo, H. H. Yoo

Abstract:

Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.

Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex

Procedia PDF Downloads 445
1309 Significance of High Specific Speed in Circulating Water Pump, Which Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge re-circulation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal re-circulation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. The author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios > 1.5, for future projects and Nss be limited to 8500 -9000 for cavitation free operation.

Keywords: best efficiency point (BEP), net positive suction head NPSHA, NPSHR, specific speed NS, suction specific speed NSS

Procedia PDF Downloads 254
1308 Entropy Risk Factor Model of Exchange Rate Prediction

Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw

Abstract:

We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.

Keywords: currency trading, entropy, market timing, risk factor model

Procedia PDF Downloads 271
1307 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 187
1306 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
1305 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
1304 Study on Roll Marks of Stainless Steel in Rolling Mill

Authors: Cai-Wan Chang-Jian, Han-Ting Tsai

Abstract:

In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks.

Keywords: roll mark, plane strain, rolling mill, stainless steel

Procedia PDF Downloads 453
1303 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 143
1302 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 389
1301 Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment

Authors: M. M. Atashi, P. Malekzadeh

Abstract:

A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.

Keywords: out of plane, free vibration, curved beams, functionally graded, thermal environment

Procedia PDF Downloads 356
1300 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: smart material, on-line differential artificial neural network, active control, finite element method

Procedia PDF Downloads 210
1299 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.

Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis

Procedia PDF Downloads 502
1298 An Experimental Study of Automotive Drum Brake Vibrations

Authors: Nouby Ghazaly

Abstract:

The present paper investigates experimentally the effect coefficient of friction at different operation conditions on the variation of the brake temperature, brake force, and brake vibration with the braking time. All the experimental tests were carried out using brake dynamometer which designed and constructed in Vehicle Dynamic Laboratory. The results indicate that the brake temperature increases with the increase of the normal force and sliding speed especially with the increase of the braking time. The normal force has the effect on increasing the brake force. On the contrary, the vehicle speed has the effect on decreasing the brake force. Both the normal force and sliding speed affect the brake vibration according to the friction behavior.

Keywords: brake dynamometer, coefficient of friction, drum brake vibrations, friction behavior

Procedia PDF Downloads 311
1297 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals

Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti

Abstract:

Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.

Keywords: neuroinformatics, bioinformatics, network tools, brain mapping

Procedia PDF Downloads 182
1296 Mechanical Qualification Test Campaign on the Demise Observation Capsule

Authors: B. Tiseo, V. Quaranta, G. Bruno, R. Gardi, T. Watts, S. Dussy

Abstract:

This paper describes the qualification test campaign performed on the Demise Observation Capsule DOC-EQM as part of the Future Launch Preparatory Program FLPP3. The mechanical environment experienced during launch ascent and separation phase was first identified and then replicated in terms of sine, random and shock vibration. The loads identification is derived by selecting the worst possible case. Vibration and shock qualification test performed at CIRA Space Qualification laboratory is herein described. Mechanical fixtures’ design and validation, carried out by means of FEM, is also addressed due to its fundamental role in the vibrational test campaign. The Demise Observation Capsule (DOC) successfully passed the qualification test campaign. Functional test and resonance search have not been point any fault and damages of the capsule.

Keywords: capsule, demise, demise observation capsule, DOC, launch environment, re-ntry, qualification

Procedia PDF Downloads 151
1295 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
1294 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network

Authors: K. Padmavathi, K. Sri Ramakrishna

Abstract:

This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.

Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database

Procedia PDF Downloads 281
1293 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 541
1292 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review

Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman

Abstract:

Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.

Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency

Procedia PDF Downloads 323