Search results for: multiresolution segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 437

Search results for: multiresolution segmentation

47 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model

Authors: Tanu Khanuja, Harikrishnan N. Unni

Abstract:

Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.

Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress

Procedia PDF Downloads 160
46 Using Motives of Sports Consumption to Explain Team Identity: A Comparison between Football Fans across the Pond

Authors: G. Scremin, I. Y. Suh, S. Doukas

Abstract:

Spectators follow their favorite sports teams for different reasons. While some attend a sporting event simply for its entertainment value, others do so because of the personal sense of achievement and accomplishment their connection with a sports team creates. Moreover, the level of identity spectators feel toward their favorite sports team falls in a broad continuum. Some are mere spectators. For those spectators, their association to a sports team has little impact on their self-image. Others are die-hard fans who are proud of their association with their team and whose connection with that team is an important reflection of who they are. Several motives for sports consumption can be used to explain the level of spectator support in a variety of sports. Those motives can also be used to explain the variance in the identification, attachment, and loyalty spectators feel toward their favorite sports team. Motives for sports consumption can be used to discriminate the degree of identification spectators have with their favorite sports team. In this study, motives for sports consumption was used to discriminate the level of identity spectators feel toward their sports team. It was hypothesized that spectators with a strong level of team identity would report higher rates of interest in player, interest in sports, and interest in team than spectators with a low level of team identity. And spectators with a low level of team identity would report higher rates for entertainment value, bonding with friends or family, and wholesome environment. Football spectators in the United States and England were surveyed about their motives for football consumption and their level of identification with their favorite football team. To assess if the motives of sports fans differed by level of team identity and allegiance to an American or English football team, a Multivariate Analysis of Variance (MANOVA) under the General Linear Model (GLM) procedure found in SPSS was performed. The independent variables were level of team identity and allegiance to an American or English football team, and the dependent variables were the sport fan motives. A tripartite split (low, moderate, high) was used on a composite measure for team identity. Preliminary results show that effect of team identity is statistically significant (p < .001) for at least nine of the 17 motives for sports consumption assessed in this investigation. These results indicate that the motives of spectators with a strong level of team identity differ significantly from spectators with a low level of team identity. Those differences can be used to discriminate the degree of identification spectators have with their favorite sports team. Sports marketers can use these methods and results to develop identity profiles of spectators and create marketing strategies specifically designed to attract those spectators based on their unique motives for consumption and their level of team identification.

Keywords: fan identification, market segmentation of sports fans, motives for sports consumption, team identity

Procedia PDF Downloads 167
45 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 78
44 A Concept Study to Assist Non-Profit Organizations to Better Target Developing Countries

Authors: Malek Makki

Abstract:

The main purpose of this research study is to assist non-profit organizations (NPOs) to better segment a group of least developing countries and to optimally target the most needier areas, so that the provided aids make positive and lasting differences. We applied international marketing and strategy approaches to segment a sub-group of candidates among a group of 151 countries identified by the UN-G77 list, and furthermore, we point out the areas of priorities. We use reliable and well known criteria on the basis of economics, geography, demography and behavioral. These criteria can be objectively estimated and updated so that a follow-up can be performed to measure the outcomes of any program. We selected 12 socio-economic criteria that complement each other: GDP per capita, GDP growth, industry value added, export per capita, fragile state index, corruption perceived index, environment protection index, ease of doing business index, global competitiveness index, Internet use, public spending on education, and employment rate. A weight was attributed to each variable to highlight the relative importance of each criterion within the country. Care was taken to collect the most recent available data from trusted well-known international organizations (IMF, WB, WEF, and WTO). Construct of equivalence was carried out to compare the same variables across countries. The combination of all these weighted estimated criteria provides us with a global index that represents the level of development per country. An absolute index that combines wars and risks was introduced to exclude or include a country on the basis of conflicts and a collapsing state. The final step applied to the included countries consists of a benchmarking method to select the segment of countries and the percentile of each criterion. The results of this study allowed us to exclude 16 countries for risks and security. We also excluded four countries because they lack reliable and complete data. The other countries were classified per percentile thru their global index, and we identified the needier and the areas where aids are highly required to help any NPO to prioritize the area of implementation. This new concept is based on defined, actionable, accessible and accurate variables by which NPO can implement their program and it can be extended to profit companies to perform their corporate social responsibility acts.

Keywords: developing countries, international marketing, non-profit organization, segmentation

Procedia PDF Downloads 302
43 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 7
42 Realistic Modeling of the Preclinical Small Animal Using Commercial Software

Authors: Su Chul Han, Seungwoo Park

Abstract:

As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

Keywords: mimics, preclinical small animal, segmentation, 3D printer

Procedia PDF Downloads 366
41 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
40 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 257
39 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)

Authors: Carolina Silva Ansélmo

Abstract:

Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.

Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay

Procedia PDF Downloads 78
38 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 104
37 Short Association Bundle Atlas for Lateralization Studies from dMRI Data

Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara

Abstract:

Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.

Keywords: dMRI, hierarchical clustering, lateralization index, tractography

Procedia PDF Downloads 331
36 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City

Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng

Abstract:

Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.

Keywords: human perception, public space quality, deep learning, negative elements, street images

Procedia PDF Downloads 114
35 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 303
34 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 296
33 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
32 A Dynamic Cardiac Single Photon Emission Computer Tomography Using Conventional Gamma Camera to Estimate Coronary Flow Reserve

Authors: Maria Sciammarella, Uttam M. Shrestha, Youngho Seo, Grant T. Gullberg, Elias H. Botvinick

Abstract:

Background: Myocardial perfusion imaging (MPI) is typically performed with static imaging protocols and visually assessed for perfusion defects based on the relative intensity distribution. Dynamic cardiac SPECT, on the other hand, is a new imaging technique that is based on time varying information of radiotracer distribution, which permits quantification of myocardial blood flow (MBF). In this abstract, we report a progress and current status of dynamic cardiac SPECT using conventional gamma camera (Infinia Hawkeye 4, GE Healthcare) for estimation of myocardial blood flow and coronary flow reserve. Methods: A group of patients who had high risk of coronary artery disease was enrolled to evaluate our methodology. A low-dose/high-dose rest/pharmacologic-induced-stress protocol was implemented. A standard rest and a standard stress radionuclide dose of ⁹⁹ᵐTc-tetrofosmin (140 keV) was administered. The dynamic SPECT data for each patient were reconstructed using the standard 4-dimensional maximum likelihood expectation maximization (ML-EM) algorithm. Acquired data were used to estimate the myocardial blood flow (MBF). The correspondence between flow values in the main coronary vasculature with myocardial segments defined by the standardized myocardial segmentation and nomenclature were derived. The coronary flow reserve, CFR, was defined as the ratio of stress to rest MBF values. CFR values estimated with SPECT were also validated with dynamic PET. Results: The range of territorial MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between estimated with PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). But the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The mean stress MBF value was significantly lower for angiographically abnormal than that for the normal (Normal Mean MBF = 2.49 ± 0.61, Abnormal Mean MBF = 1.43 ± 0. 0.62, P < .001). Conclusions: The visually assessed image findings in clinical SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion. The MBF and CFR measured with dynamic SPECT are fully objective and available only with the data generated from the dynamic SPECT method. A quantitative approach such as measuring CFR using dynamic SPECT imaging is a better mode of diagnosing CAD than visual assessment of stress and rest images from static SPECT images Coronary Flow Reserve.

Keywords: dynamic SPECT, clinical SPECT/CT, selective coronary angiograph, ⁹⁹ᵐTc-Tetrofosmin

Procedia PDF Downloads 150
31 The Geochemical Characteristic and Tectonic Setting of Mezoic-Cenozoic Volcanic and Granitic Rocks in Southern Sumatra, Indonesia

Authors: Syahrir Andi Mangga

Abstract:

During 1989–1993, the Geological Research and Development Center (recent Geological Survey Institute) Geological Agency, Ministry of Energy and Mineral Resources Republic of Indonesia was the collaboration with British Geological Survey, the United Kingdom to do technical assistance in order to collect data of geology in Sumatra Island. The overall corporation of technical programs was larger concern in stratigraphy, geochemical and age-dating studies. Availability of new data has been stimulated to reassessment of tectonic evolution of Sumatra Island. The study area located in Southern Sumatra within at latitudes 0°-6° S and 99°40’-106’00 E longitudes. The study tectonic is situated within along South Western margin of Sunda land, The Southeast Asia Continental extension arc of the Eurasian Plate and formed as part of Sunda Arc. The oceanic crust of Indian-Australian plate recently is being oblique subduction along the Sunda Trench off the West coast Sumatra. The Mesozoic-Cenozoic of the volcanic and granitic rocks can be divided into northern and southern plutons, defining a series subparallel, controlled by fault, northwest-southeast trending belts, some of the plutons are deformed and under-formed. They are widely exposed along the south-eastern side of the Barisan mountain. Based on the characteristic of minerals and crystallography, rocks found in this study area were granite, granitic, monzogranite and andesitic-Basaltic Volcanic Rock. It belongs to calc Alkaline was predominantly metalumina, I-Type Granite, Volcanic arc granites, Syncollisonal Granites (Syn_COLG) and tholeiitic basalt. It was formed since 169±5 to 20±1 Ma. The origin of magmas in interpreted to be derived from partial melting of igneous rock. The occurrence of the gratoid and volcanic rocks supposed to be closely related to the subduction of the Australian-Hindia oceanic crust beneath the Eurasia/Sunda land Continental Crust as Volcanic arc or continental margin granitic and shown youngest to the southwest. The subduction process having probably been different in position between one terrane to others led to the occurrence of segmentation subduction system. The positional discontinuities of the subduction are probably caused by the difference in time of emplacement and mechanism of volcanic and granitic rock between segments.

Keywords: tectonic setting, I-type granitic, subduction, Southern Sumatra

Procedia PDF Downloads 245
30 Mikrophonie I (1964) by Karlheinz Stockhausen - Between Idea and Auditory Image

Authors: Justyna Humięcka-Jakubowska

Abstract:

1. Background in music analysis. Traditionally, when we think about a composer’s sketches, the chances are that we are thinking in terms of the working out of detail, rather than the evolution of an overall concept. Since music is a “time art’, it follows that questions of a form cannot be entirely detached from considerations of time. One could say that composers tend to regard time either as a place gradually and partially intuitively filled, or they can look for a specific strategy to occupy it. In my opinion, one thing that sheds light on Stockhausen's compositional thinking is his frequent use of 'form schemas', that is often a single-page representation of the entire structure of a piece. 2. Background in music technology. Sonic Visualiser is a program used to study a musical recording. It is an open source application for viewing, analysing, and annotating music audio files. It contains a number of visualisation tools, which are designed with useful default parameters for musical analysis. Additionally, the Vamp plugin format of SV supports to provide analysis such as for example structural segmentation. 3. Aims. The aim of my paper is to show how SV may be used to obtain a better understanding of the specific musical work, and how the compositional strategy does impact on musical structures and musical surfaces. I want to show that ‘traditional” music analytic methods don’t allow to indicate interrelationships between musical surface (which is perceived) and underlying musical/acoustical structure. 4. Main Contribution. Stockhausen had dealt with the most diverse musical problems by the most varied methods. A characteristic which he had never ceased to be placed at the center of his thought and works, it was the quest for a new balance founded upon an acute connection between speculation and intuition. In the case with Mikrophonie I (1964) for tam-tam and 6 players Stockhausen makes a distinction between the "connection scheme", which indicates the ground rules underlying all versions, and the form scheme, which is associated with a particular version. The preface to the published score includes both the connection scheme, and a single instance of a "form scheme", which is what one can hear on the CD recording. In the current study, the insight into the compositional strategy chosen by Stockhausen was been compared with auditory image, that is, with the perceived musical surface. Stockhausen's musical work is analyzed both in terms of melodic/voice and timbre evolution. 5. Implications The current study shows how musical structures have determined of musical surface. My general assumption is this, that while listening to music we can extract basic kinds of musical information from musical surfaces. It is shown that an interactive strategies of musical structure analysis can offer a very fruitful way of looking directly into certain structural features of music.

Keywords: automated analysis, composer's strategy, mikrophonie I, musical surface, stockhausen

Procedia PDF Downloads 297
29 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 115
28 The Importance of Country-of-Origin Information and Perceived Product Quality in Uzbekistan

Authors: Begzod Nishanov, Farhod Karimov

Abstract:

Globalization and the internet have completely changed the way in which businesses operate as well as has equipped customers with endless potential. Today, consumers’ product choice is not only affected by branding, price and quality of the product, but also by the country-of-origin information. Precisely, ‘Made In’ label is considered as one of the driving factors which directly impact on consumers’ preferences. Generally, it is obvious that products manufactured in less developed countries are considered to be of lower quality and riskier compared to the products made in developed countries. In this regard, it is worth to note that this phenomenon is mainly applicable to western developed countries. However, there is a lack of empirical research on underlying the influence of country-of-origin phenomenon in emerging economies such as Uzbekistan. Today, Uzbek market is being dominated by growing number of foreign made products. Uzbek manufacturers are facing intense competition not only from local producers but also from the availability of foreign goods suppliers. Consequently, consumers are given wider choice of products than ever before. In this regard, it is important to define the importance of country-of-origin information in order to understand Uzbek consumers’ preference. The methodology of the research is formulated based on the methodology of previous papers. A total 527 online questionnaires were completed. Data analysis was conducted using factor analysis and analysis of variance test (ANOVA). Findings of the research support the view that Uzbek consumers attach great importance to the country-of-origin information of products. Precisely, it can be stated that Uzbek people perceive product quality by its ‘Made in...’ label, especially when buying high involvement goods such as car or refrigerator. Another findings of the paper show that products manufactured in developed countries including Germany, Japan and USA are found to be of high quality, while products manufactured in less developed countries are considered to be of lower quality. Marketers can use this information for segmentation purposes. For example, products manufactured in less developed countries can be targeted for low-to-middle income families while goods manufactured in developed countries can be targeted for higher income families. In conclusion, it can be stated that perceived product quality of products that are made in Uzbekistan has slightly increased since 18 years. It implies that nowadays products under ‘Made in Uzbekistan’ label is continually becoming available to many consumers in foreign markets, especially among Commonwealth of Independent States (CIS) countries. Therefore, conducting further research to explore the phenomenon of country-of-origin information and perceived product quality in emerging markets is of paramount importance.

Keywords: country-of-origin, consumer behavior, product evaluation, perceived quality

Procedia PDF Downloads 260
27 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 299
26 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 64
25 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
24 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 133
23 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis

Authors: Mohamed Ali Abdennadher

Abstract:

Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.

Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology

Procedia PDF Downloads 29
22 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 378
21 The Impact of the Covid-19 Crisis on the Information Behavior in the B2B Buying Process

Authors: Stehr Melanie

Abstract:

The availability of apposite information is essential for the decision-making process of organizational buyers. Due to the constraints of the Covid-19 crisis, information channels that emphasize face-to-face contact (e.g. sales visits, trade shows) have been unavailable, and usage of digitally-driven information channels (e.g. videoconferencing, platforms) has skyrocketed. This paper explores the question in which areas the pandemic induced shift in the use of information channels could be sustainable and in which areas it is a temporary phenomenon. While information and buying behavior in B2C purchases has been regularly studied in the last decade, the last fundamental model of organizational buying behavior in B2B was introduced by Johnston and Lewin (1996) in times before the advent of the internet. Subsequently, research efforts in B2B marketing shifted from organizational buyers and their decision and information behavior to the business relationships between sellers and buyers. This study builds on the extensive literature on situational factors influencing organizational buying and information behavior and uses the economics of information theory as a theoretical framework. The research focuses on the German woodworking industry, which before the Covid-19 crisis was characterized by a rather low level of digitization of information channels. By focusing on an industry with traditional communication structures, a shift in information behavior induced by an exogenous shock is considered a ripe research setting. The study is exploratory in nature. The primary data source is 40 in-depth interviews based on the repertory-grid method. Thus, 120 typical buying situations in the woodworking industry and the information and channels relevant to them are identified. The results are combined into clusters, each of which shows similar information behavior in the procurement process. In the next step, the clusters are analyzed in terms of the post and pre-Covid-19 crisis’ behavior identifying stable and dynamic information behavior aspects. Initial results show that, for example, clusters representing search goods with low risk and complexity suggest a sustainable rise in the use of digitally-driven information channels. However, in clusters containing trust goods with high significance and novelty, an increased return to face-to-face information channels can be expected after the Covid-19 crisis. The results are interesting from both a scientific and a practical point of view. This study is one of the first to apply the economics of information theory to organizational buyers and their decision and information behavior in the digital information age. Especially the focus on the dynamic aspects of information behavior after an exogenous shock might contribute new impulses to theoretical debates related to the economics of information theory. For practitioners - especially suppliers’ marketing managers and intermediaries such as publishers or trade show organizers from the woodworking industry - the study shows wide-ranging starting points for a future-oriented segmentation of their marketing program by highlighting the dynamic and stable preferences of elaborated clusters in the choice of their information channels.

Keywords: B2B buying process, crisis, economics of information theory, information channel

Procedia PDF Downloads 184
20 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 176
19 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 231
18 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 188