Search results for: motor complexity
2210 Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions
Authors: L. Edirisinghe, Z. Jin, A. W. Wijeratne, R. Mudunkotuwa
Abstract:
Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept.Keywords: virtual container yard, imbalance, management, inventory
Procedia PDF Downloads 1952209 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface
Authors: Ping Tan, Xiaomeng Su, Yi Shen
Abstract:
The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean
Procedia PDF Downloads 1262208 Effect of Cerebellar High Frequency rTMS on the Balance of Multiple Sclerosis Patients with Ataxia
Authors: Shereen Ismail Fawaz, Shin-Ichi Izumi, Nouran Mohamed Salah, Heba G. Saber, Ibrahim Mohamed Roushdi
Abstract:
Background: Multiple sclerosis (MS) is a chronic, inflammatory, mainly demyelinating disease of the central nervous system, more common in young adults. Cerebellar involvement is one of the most disabling lesions in MS and is usually a sign of disease progression. It plays a major role in the planning, initiation, and organization of movement via its influence on the motor cortex and corticospinal outputs. Therefore, it contributes to controlling movement, motor adaptation, and motor learning, in addition to its vast connections with other major pathways controlling balance, such as the cerebellopropriospinal pathways and cerebellovestibular pathways. Hence, trying to stimulate the cerebellum by facilitatory protocols will add to our motor control and balance function. Non-invasive brain stimulation, both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), has recently emerged as effective neuromodulators to influence motor and nonmotor functions of the brain. Anodal tDCS has been shown to improve motor skill learning and motor performance beyond the training period. Similarly, rTMS, when used at high frequency (>5 Hz), has a facilitatory effect on the motor cortex. Objective: Our aim was to determine the effect of high-frequency rTMS over the cerebellum in improving balance and functional ambulation of multiple sclerosis patients with Ataxia. Patients and methods: This was a randomized single-blinded placebo-controlled prospective trial on 40 patients. The active group (N=20) received real rTMS sessions, and the control group (N=20) received Sham rTMS using a placebo program designed for this treatment. Both groups received 12 sessions of high-frequency rTMS over the cerebellum, followed by an intensive exercise training program. Sessions were given three times per week for four weeks. The active group protocol had a frequency of 10 Hz rTMS over the cerebellar vermis, work period 5S, number of trains 25, and intertrain interval 25s. The total number of pulses was 1250 pulses per session. The control group received Sham rTMS using a placebo program designed for this treatment. Both groups of patients received an intensive exercise program, which included generalized strengthening exercises, endurance and aerobic training, trunk abdominal exercises, generalized balance training exercises, and task-oriented training such as Boxing. As a primary outcome measure the Modified ICARS was used. Static Posturography was done with: Patients were tested both with open and closed eyes. Secondary outcome measures included the expanded Disability Status Scale (EDSS) and 8 Meter walk test (8MWT). Results: The active group showed significant improvements in all the functional scales, modified ICARS, EDSS, and 8-meter walk test, in addition to significant differences in static Posturography with open eyes, while the control group did not show such differences. Conclusion: Cerebellar high-frequency rTMS could be effective in the functional improvement of balance in MS patients with ataxia.Keywords: brain neuromodulation, high frequency rTMS, cerebellar stimulation, multiple sclerosis, balance rehabilitation
Procedia PDF Downloads 902207 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads
Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh
Abstract:
Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.Keywords: aluminum foam, loading complexity, characterization, biaxial loading
Procedia PDF Downloads 1422206 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 2032205 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach
Authors: Bashiru Olayinka Adisa, Najeem Lateef
Abstract:
The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.Keywords: electronics, sensor theories and motor, robot, technology
Procedia PDF Downloads 2782204 Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor
Authors: Huai-Cong Liu,Tae Chul Jeong,Ju Lee
Abstract:
This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data.Keywords: SynRM, magnetic-saturation, magnetic circuit, analytical modeling
Procedia PDF Downloads 5032203 The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People
Authors: Amina Akhtar, Rory O'Connor
Abstract:
Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers.Keywords: major trauma, paediatric trauma, road traffic accidents, diurnal pattern
Procedia PDF Downloads 1012202 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 1802201 Speech Disorders as Predictors of Social Participation of Children with Cerebral Palsy in the Primary Schools of the Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić–Jovanović, Srećko Potić, Sanja Tomić
Abstract:
The name cerebral palsy comes from the word cerebrum, which means the brain and the word palsy, which means seizure, and essentially refers to the movement disorder. In the clinical picture of cerebral palsy, basic neuromotor disorders are associated with other various disorders: behavioural, intellectual, speech, sensory, epileptic seizures, and bone and joint deformities. Motor speech disorders are among the most common difficulties present in people with cerebral palsy. Social participation represents an interaction between an individual and their social environment. Quality of social participation of the students with cerebral palsy at school is an important indicator of their successful participation in adulthood. One of the most important skills for the undisturbed social participation is ability of good communication. The aim of the study was to determine relation between social participation of students with cerebral palsy and presence of their speech impairment in primary schools in the Czech Republic. The study was performed in the Czech Republic in mainstream schools and schools established for the pupils with special education needs. We analysed 75 children with cerebral palsy aged between six and twelve years attending up to sixth grade by using the first and the third part of the school function assessment questionnaire as the main instrument. The other instrument we used in the research is the Gross motor function classification system–five–level classification system, which measures degree of motor functions of children and youth with cerebral palsy. Funding for this study was provided by the Grant Agency of Charles University in Prague.Keywords: cerebral palsy, social participation, speech disorders, The Czech Republic, the school function assessment
Procedia PDF Downloads 2852200 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 4872199 Construction of a Radial Centrifuge Pump for Agricultural Applications
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
With the evolution of the productive processes, demonstrated mainly by the presence every time larger of the irrigation and to crescent it disputes for water, accompanied by your shortage (distances every time larger), there is need to project facilities that can provide supply of water with larger speed and efficiency. Being like this, the presence of hydraulic pumps in an irrigation project or water supply for small communities, is of highest importance, and the knowledge of the fundamental parts to your good operation it deserves the due attention and care. Hydraulic pumps are machines of flow, whose function is to supply energy for the water, in order to press down her, through the conversion of mechanical energy of your originating from rotor a motor the combustion or of an electric motor. This way, the hydraulic pumps are had as generating hydraulic machines. The objective of this work was to project and to build a radial centrifugal pump for agricultural application in small communities.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigation
Procedia PDF Downloads 3712198 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 3872197 Effect of Oral Clonidine Premedication on Subarachnoid Block Characteristics of 0.5 % Hyperbaric Bupivacaine for Laparoscopic Gynecological Procedures – A Randomized Control Study
Authors: Buchh Aqsa, Inayat Umar
Abstract:
Background- Clonidine, α 2 agonist, possesses several properties to make it valuable adjuvant for spinal anesthesia. The study was aimed to evaluate the clinical effects of oral clonidine premedication for laparoscopic gynecological procedures under subarachnoid block. Patients and method- Sixtyfour adult female patients of ASA physical status I and II, aged 25 to 45 years and scheduled for laparoscopic gynecological procedures under the subarachnoid block, were randomized into two comparable equal groups of 32 patients each to received either oral clonidine, 100 µg (Group I) or placebo (Group II), 90 minutes before the procedure. Subarachnoid block was established with of 3.5 ml of 0.5% hyperbaric bupivacaine in all patients. Onset and duration of sensory and motor block, maximum cephalad level, and the regression time to reach S1 sensory level were assessed as primary end points. Sedation, hemodynamic variability, and respiratory depression or any other side effects were evaluated as secondary outcomes. Results- The demographic profile was comparable. The intraoperative hemodynamic parameters showed significant differences between groups. Oral clonidine was accelerated the onset time of sensory and motor blockade and extended the duration of sensory block (216.4 ± 23.3 min versus 165 ± 37.2 min, P <0.05). The duration of motor block showed no significant difference. The sedation score was more than 2 in the clonidine group as compared to the control group. Conclusion- Oral clonidine premedication has extended the duration of sensory analgesia with arousable sedation. It also prevented the post spinal shivering of the subarachnoid block.Keywords: oral clonidine, subarachnoid block, sensory analgesia, laparoscopic gynaecological
Procedia PDF Downloads 822196 Transition to Hydrogen Cities in Korea and Japan
Authors: Minhee Son, Kyung Nam Kim
Abstract:
This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy
Procedia PDF Downloads 4902195 A Methodological Approach to Development of Mental Script for Mental Practice of Micro Suturing
Authors: Vaikunthan Rajaratnam
Abstract:
Intro: Motor imagery (MI) and mental practice (MP) can be an alternative to acquire mastery of surgical skills. One component of using this technique is the use of a mental script. The aim of this study was to design and develop a mental script for basic micro suturing training for skill acquisition using a low-fidelity rubber glove model and to describe the detailed methodology for this process. Methods: This study was based on a design and development research framework. The mental script was developed with 5 expert surgeons performing a cognitive walkthrough of the repair of a vertical opening in a rubber glove model using 8/0 nylon. This was followed by a hierarchal task analysis. A draft script was created, and face and content validity assessed with a checking-back process. The final script was validated with the recruitment of 28 participants, assessed using the Mental Imagery Questionnaire (MIQ). Results: The creation of the mental script is detailed in the full text. After assessment by the expert panel, the mental script had good face and content validity. The average overall MIQ score was 5.2 ± 1.1, demonstrating the validity of generating mental imagery from the mental script developed in this study for micro suturing in the rubber glove model. Conclusion: The methodological approach described in this study is based on an instructional design framework to teach surgical skills. This MP model is inexpensive and easily accessible, addressing the challenge of reduced opportunities to practice surgical skills. However, while motor skills are important, other non-technical expertise required by the surgeon is not addressed with this model. Thus, this model should act a surgical training augment, but not replace it.Keywords: mental script, motor imagery, cognitive walkthrough, verbal protocol analysis, hierarchical task analysis
Procedia PDF Downloads 1032194 Different Motor Inhibition Processes in Action Selection Stage: A Study with Spatial Stroop Paradigm
Authors: German Galvez-Garcia, Javier Albayay, Javiera Peña, Marta Lavin, George A. Michael
Abstract:
The aim of this research was to investigate whether the selection of the actions needs different inhibition processes during the response selection stage. In Experiment 1, we compared the magnitude of the Spatial Stroop effect, which occurs in response selection stage, in two motor actions (lifting vs reaching) when the participants performed both actions in the same block or in different blocks (mixed block vs. pure blocks).Within pure blocks, we obtained faster latencies when lifting actions were performed, but no differences in the magnitude of the Spatial Stroop effect were observed. Within mixed block, we obtained faster latencies as well as bigger-magnitude for Spatial Stroop effect when reaching actions were performed. We concluded that when no action selection is required (the pure blocks condition), inhibition works as a unitary system, whereas in the mixed block condition, where action selection is required, different inhibitory processes take place within a common processing stage. In Experiment 2, we investigated this common processing stage in depth by limiting participants’ available resources, requiring them to engage in a concurrent auditory task within a mixed block condition. The Spatial Stroop effect interacted with Movement as it did in Experiment 1, but it did not significantly interact with available resources (Auditory task x Spatial Stroop effect x Movement interaction). Thus, we concluded that available resources are distributed equally to both inhibition processes; this reinforces the likelihood of there being a common processing stage in which the different inhibitory processes take place.Keywords: inhibition process, motor processes, selective inhibition, dual task
Procedia PDF Downloads 3922193 Efficacy of Opicapone and Levodopa with Different Levodopa Daily Doses in Parkinson’s Disease Patients with Early Motor Fluctuations: Findings from the Korean ADOPTION Study
Authors: Jee-Young Lee, Joaquim J. Ferreira, Hyeo-il Ma, José-Francisco Rocha, Beomseok Jeon
Abstract:
The effective management of wearing-off is a key driver of medication changes for patients with Parkinson’s disease (PD) treated with levodopa (L-DOPA). While L-DOPA is well tolerated and efficacious, its clinical utility over time is often limited by the development of complications such as dyskinesia. Still, common first-line option includes adjusting the daily L-DOPA dose followed by adjunctive therapies usually counting for the L-DOPA equivalent daily dose (LEDD). The LEDD conversion formulae are a tool used to compare the equivalence of anti-PD medications. The aim of this work is to compare the effects of opicapone (OPC) 50 mg, a catechol-O-methyltransferase (COMT) inhibitor, and an additional 100 mg dose of L-DOPA in reducing the off time in PD patients with early motor fluctuations receiving different daily L-DOPA doses. OPC was found to be well tolerated and efficacious in advanced PD population. This work utilized patients' home diary data from a 4-week Phase 2 pharmacokinetics clinical study. The Korean ADOPTION study randomized (1:1) patients with PD and early motor fluctuations treated with up to 600 mg of L-DOPA given 3–4 times daily. The main endpoint was change from baseline in off time in the subgroup of patients receiving 300–400 mg/day L-DOPA at baseline plus OPC 50 mg and in the subgroup receiving >300 mg/day L-DOPA at baseline plus an additional dose of L-DOPA 100 mg. Of the 86 patients included in this subgroup analysis, 39 received OPC 50 mg and 47 L-DOPA 100 mg. At baseline, both L-DOPA total daily dose and LEDD were lower in the L-DOPA 300–400 mg/day plus OPC 50 mg group than in the L-DOPA >300 mg/day plus L-DOPA 100 mg. However, at Week 4, LEDD was similar between the two groups. The mean (±standard error) reduction in off time was approximately three-fold greater for the OPC 50 mg than for the L-DOPA 100 mg group, being -63.0 (14.6) minutes for patients treated with L-DOPA 300–400 mg/day plus OPC 50 mg, and -22.1 (9.3) minutes for those receiving L-DOPA >300 mg/day plus L-DOPA 100 mg. In conclusion, despite similar LEDD, OPC demonstrated a significantly greater reduction in off time when compared to an additional 100 mg L-DOPA dose. The effect of OPC appears to be LEDD independent, suggesting that caution should be exercised when employing LEDD to guide treatment decisions as this does not take into account the timing of each dose, onset, duration of therapeutic effect and individual responsiveness. Additionally, OPC could be used for keeping the L-DOPA dose as low as possible for as long as possible to avoid the development of motor complications which are a significant source of disability.Keywords: opicapone, levodopa, pharmacokinetics, off-time
Procedia PDF Downloads 622192 Volume Density of Power of Multivector Electric Machine
Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev
Abstract:
Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor
Procedia PDF Downloads 3382191 Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method
Authors: Alok Kumar Pasa, Krs Raghavan
Abstract:
This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness.Keywords: finite element time stepping method, high-speed BLDC motor, flywheel energy storage system, coreless BLDC motors
Procedia PDF Downloads 42190 Explaining Irregularity in Music by Entropy and Information Content
Authors: Lorena Mihelac, Janez Povh
Abstract:
In 2017, we conducted a research study using data consisting of 160 musical excerpts from different musical styles, to analyze the impact of entropy of the harmony on the acceptability of music. In measuring the entropy of harmony, we were interested in unigrams (individual chords in the harmonic progression) and bigrams (the connection of two adjacent chords). In this study, it has been found that 53 musical excerpts out from 160 were evaluated by participants as very complex, although the entropy of the harmonic progression (unigrams and bigrams) was calculated as low. We have explained this by particularities of chord progression, which impact the listener's feeling of complexity and acceptability. We have evaluated the same data twice with new participants in 2018 and with the same participants for the third time in 2019. These three evaluations have shown that the same 53 musical excerpts, found to be difficult and complex in the study conducted in 2017, are exhibiting a high feeling of complexity again. It was proposed that the content of these musical excerpts, defined as “irregular,” is not meeting the listener's expectancy and the basic perceptual principles, creating a higher feeling of difficulty and complexity. As the “irregularities” in these 53 musical excerpts seem to be perceived by the participants without being aware of it, affecting the pleasantness and the feeling of complexity, they have been defined as “subliminal irregularities” and the 53 musical excerpts as “irregular.” In our recent study (2019) of the same data (used in previous research works), we have proposed a new measure of the complexity of harmony, “regularity,” based on the irregularities in the harmonic progression and other plausible particularities in the musical structure found in previous studies. We have in this study also proposed a list of 10 different particularities for which we were assuming that they are impacting the participant’s perception of complexity in harmony. These ten particularities have been tested in this paper, by extending the analysis in our 53 irregular musical excerpts from harmony to melody. In the examining of melody, we have used the computational model “Information Dynamics of Music” (IDyOM) and two information-theoretic measures: entropy - the uncertainty of the prediction before the next event is heard, and information content - the unexpectedness of an event in a sequence. In order to describe the features of melody in these musical examples, we have used four different viewpoints: pitch, interval, duration, scale degree. The results have shown that the texture of melody (e.g., multiple voices, homorhythmic structure) and structure of melody (e.g., huge interval leaps, syncopated rhythm, implied harmony in compound melodies) in these musical excerpts are impacting the participant’s perception of complexity. High information content values were found in compound melodies in which implied harmonies seem to have suggested additional harmonies, affecting the participant’s perception of the chord progression in harmony by creating a sense of an ambiguous musical structure.Keywords: entropy and information content, harmony, subliminal (ir)regularity, IDyOM
Procedia PDF Downloads 1312189 Functional Performance Needs of Individuals with Intellectual and Developmental Disabilities
Authors: Noor Taleb Ismael, Areej Abd Al Kareem Al Titi, Ala'a Fayez Jaber
Abstract:
Objectives: To investigate self-perceived functional performance among adults with IDD who are Jordanian residential care and rehabilitation centers residents. Also, to investigate their functional abilities (i.e., motor, and cognitive). In addition, to determine the motor and cognitive predictors of their functional performance. Methods: The study utilized a cross-sectional descriptive design; the sample included 180 individuals with IDD (90 males and 90 females) aged 18 to 75 years. The inclusion criteria encompassed: 1) Adults with a confirmed IDD by their physician’s professional and 2) residents in Jordanian Residential Care and Rehabilitation Centers affiliated with the Jordanian Ministry of Social Development. The exclusion criteria were: 1) bedridden or totally dependent on their care providers; 2) who had an accident or acquired neurological conditions. Researchers conducted semi-structured interviews to complete the outcome measures that include the Canadian Occupational Performance Measure (COPM), the Functional Independence Measure (FIM), the Montreal Cognitive Assessment (MoCA), the Mini-Mental Status Examination (MMSE), and the sociodemographic questionnaire. Data analyses consisted of descriptive statistics, analysis of frequencies, correlation, and regression analyses. Result: Individuals with IDD showed low functional performance in all daily life areas, including self-care, productivity, and leisure; there was severe cognitive impairment and poor independence and functional performance. (COPM Performance M= 1.433, SD±.57021, COPM Satisfaction M= 1.31, SD±.54, FIM M= 3.673, SD± 1.7918). Two predictive models were validated for the COPM performance and FIM total scores. First, significant predictors of high self-perceived functional performance on COPM were high scores on FIM Motor sub scores, FIM cognitive sub scores, young age, and having a high school educational level (R2=0.603, p=0.012). Second, significant predictors of high functional capacity on FIM were a high score on the COPM performance subscale, a high MMSE score, and having a cerebral palsy (CP) diagnosis (R2=0.671, p<0.001). Conclusions: Evaluating functional performance and associated factors is important in rehabilitation to provide better services and improve health and QoL for individuals with IDD. This study suggested conducting future studies targeting integrated individuals with IDD who live with their families in the communities.Keywords: functional performance, intellectual and developmental disabilty, cognitive abilities, motor abilities
Procedia PDF Downloads 482188 The Effects of Aging on Visuomotor Behaviors in Reaching
Authors: Mengjiao Fan, Thomson W. L. Wong
Abstract:
It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration
Procedia PDF Downloads 3122187 Leadership in the Emergence Paradigm: A Literature Review on the Medusa Principles
Authors: Everard van Kemenade
Abstract:
Many quality improvement activities are planned. Leaders are strongly involved in missions, visions and strategic planning. They use, consciously or unconsciously, the PDCA-cycle, also know as the Deming cycle. After the planning, the plans are carried out and the results or effects are measured. If the results show that the goals in the plan have not been achieved, adjustments are made in the next plan or in the execution of the processes. Then, the cycle is run through again. Traditionally, the PDCA-cycle is advocated as a means to an end. However, PDCA is especially fit for planned, ordered, certain contexts. It fits with the empirical and referential quality paradigm. For uncertain, unordered, unplanned processes, something else might be needed instead of Plan-Do-Check-Act. Due to the complexity of our society, the influence of the context, and the uncertainty in our world nowadays, not every activity can be planned anymore. At the same time organisations need to be more innovative than ever. That provides leaders with ‘wicked tendencies’. However, that raises the question how one can innovate without being able to plan? Complexity science studies the interactions of a diverse group of agents that bring about change in times of uncertainty, e.g. when radical innovation is co-created. This process is called emergence. This research study explores the role of leadership in the emergence paradigm. Aim of the article is to study the way that leadership can support the emergence of innovation in a complex context. First, clarity is given on the concepts used in the research question: complexity, emergence, innovation and leadership. Thereafter a literature search is conducted to answer the research question. The topics ‘emergent leadership’ or ‘complexity leadership’ are chosen for an exploratory search in Google and Google Scholar using the berry picking method. Exclusion criterion is emergence in other disciplines than organizational development or in the meaning of ‘arising’. The literature search conducted gave 45 hits. Twenty-seven articles were excluded after reading the title and abstract because they did not research the topic of emergent leadership and complexity. After reading the remaining articles as a whole one more was excluded because the article used emergent in the limited meaning of ‗arising‘ and eight more were excluded because the topic did not match the research question of this article. That brings the total of the search to 17 articles. The useful conclusions from the articles are merged and grouped together under overarching topics, using thematic analysis. The findings are that 5 topics prevail when looking at possibilities for leadership to facilitate innovation: enabling, sharing values, dreaming, interacting, context sensitivity and adaptivity. Together they form In Dutch the acronym Medusa.Keywords: complexity science, emergence, leadership in the emergence paradigm, innovation, the Medusa principles
Procedia PDF Downloads 292186 Trade-Offs between Verb Frequency and Syntactic Complexity in Children with Developmental Language Disorder
Authors: Pui I. Chao, Shanju Lin
Abstract:
Purpose: Children with developmental language disorder (DLD) have persistent language difficulties and often face great challenges when demands are high. The aim of this study was to investigate whether verb frequency would trade-off with syntactic complexity when they talk. Method: Forty-five children with DLD, 45 chronological age matches with TD (AGE), and 45 MLU-matches with TD (MLU) who were Mandarin speakers were selected from the previous study. Language samples were collected under three contexts: conversation about children’s family and school, story retelling, and free play. MLU, verb density, utterance length difference, verb density difference, and average verb frequency were calculated and further analyzed by ANOVAs. Results: Children with DLD and their MLU matches produced shorter utterances and used fewer verbs in expressions than the AGE matches. Compared to their AGE matches, the DLD group used more verbs and verbs with lower frequency in shorter utterances but used fewer verbs and verbs with higher frequency in longer utterances. Conclusion: Mandarin-speaking children with DLD showed difficulties in verb usage and were more vulnerable to trade-offs than their age-matched peers in utterances with high demand. As a result, task demand should be taken into account as speech-language pathologists assess whether children with DLD have adequate abilities in verb usage.Keywords: developmental language disorder, syntactic complexity, trade-offs, verb frequency
Procedia PDF Downloads 1542185 A Wearable Device to Overcome Post–Stroke Learned Non-Use; The Rehabilitation Gaming System for wearables: Methodology, Design and Usability
Authors: Javier De La Torre Costa, Belen Rubio Ballester, Martina Maier, Paul F. M. J. Verschure
Abstract:
After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system that is composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution as well as implicitly reducing the expected cost associated with the use of the paretic limb, following the notion of the reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer–based measure of arm use, and its capacity to discriminate different activities that require increasing movement of the arm. We also show how the system can act as a personalized assistant by providing specific goals and adjusting them depending on the performance of the patients. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond the hospitalization time.Keywords: stroke, wearables, learned non use, hemiparesis, ADLs
Procedia PDF Downloads 2172184 Governance Networks of China’s Neighborhood Micro-Redevelopment: The Case of Haikou
Authors: Lin Zhang
Abstract:
Neighborhood redevelopment is vital to improve residents’ living environment, and there has been a national neighborhood micro-redevelopment initiative in China since 2020, which is largely different from the previous large-scale demolition and reconstruction projects. Yet, few studies systematically examine the new interactions of multiple actors in this initiative. China’s neighborhood (micro-) redevelopment is a kind of governance network, and the complexity perspective could reflect the dynamic nature of multiple actors and their relationships in governance networks. In order to better understand the fundamental shifts of governance networks in China’s neighborhood micro-redevelopment, this paper adopted a theoretical framework of complexity in governance networks and analyzed the new governance networks of neighborhood micro-redevelopment projects in Haikou accordingly.Keywords: neighborhood redevelopment, governance, networks, Haikou
Procedia PDF Downloads 892183 11-Round Impossible Differential Attack on Midori64
Authors: Zhan Chen, Wenquan Bi
Abstract:
This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 2762182 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes
Authors: Baghdasaryan Marinka
Abstract:
The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree
Procedia PDF Downloads 2702181 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens
Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu
Abstract:
A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.Keywords: ball lens, quadrant detector, axial error, radial error
Procedia PDF Downloads 473