Search results for: condensed silica fume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 611

Search results for: condensed silica fume

221 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 99
220 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals

Authors: Mohammad Javad Shariatzadeh, Dana Grecov

Abstract:

The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.

Keywords: gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants

Procedia PDF Downloads 166
219 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil

Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai

Abstract:

Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.

Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state

Procedia PDF Downloads 119
218 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose

Authors: Md. Abdul Hannan

Abstract:

Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.

Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI

Procedia PDF Downloads 246
217 Nyiragongo: An Active Volcano at Risk of Eruption without Precursor Signs

Authors: Emmanuel Havugimana

Abstract:

If there is a natural phenomenon that could endanger the lives of countless people in Central Africa, it is the possible eruption of the Nyiragongo Volcano. This one is 3,470 m above sea level and has a summit formed by a crater 1.2 km in diameter. Its composite is made up of many layers of lava and tephras from the Great Rift Valley located in the Democratic Republic of Congo. It is also located in the region of the volcanic mountains near the city of Goma in Congo and near the city of Gisenyi in Rwanda. Nyiragongo represents an imminent danger considering that its magma has a very low silica content and is thus quite fluid. Its slopes are also high and slippery, and the lava takes advantage of this to flow up to 100 km. Lately, its eruptions took place in May 2002, resumed in May 2021, and they were faster than before. The volcano remains active even today. All these factors make it among the most dangerous volcanoes in the world. On top of that, no one knows when the next eruption will take place, especially since it can also occur without any warning signs. Unfortunately, volcanological monitoring services in Congo are non-existent, and that is why this document concludes that Nyiragongo could if nothing is done in this regard, ravage the two neighboring towns: Goma in Congo and Gisenyi in Rwanda. It also proposes solutions that may contribute to preventing the expected dangers in this context.

Keywords: Nyiragongo, volcanic eruption, precursor signs, active volcano

Procedia PDF Downloads 74
216 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 306
215 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 260
214 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 363
213 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 123
212 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures

Authors: Mohsen Padervand

Abstract:

Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.

Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli

Procedia PDF Downloads 312
211 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank

Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh

Abstract:

In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.

Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry

Procedia PDF Downloads 373
210 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism

Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe

Abstract:

Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.

Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion

Procedia PDF Downloads 254
209 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs

Authors: N. Allouache, O. Rahli

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.

Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs

Procedia PDF Downloads 133
208 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 90
207 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process

Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim

Abstract:

Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.

Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia

Procedia PDF Downloads 456
206 Characterization and Evaluation of LD Slag and Fly Ash Mixture for Their Possible Utilization in Different Sectors

Authors: Jagdeep Nayak, Biswajit Paul, Anup Gupta

Abstract:

Characterization of coal refuses to fly ash, and steel slag from steel industries have been performed to develop a mixture of both these materials to enhance strength properties of their utilization in other sectors like mine fill, construction work, etc. A large amount of Linz-Donawitz (LD) slag and fly ash waste are generated from steel and thermal power industries respectively. Management of these wastes is problematic, and their reutilization may provide a sustainable waste management option. LD slag and fly ash mixed in different proportions were tested to analyse the micro structural improvement and hardening rate of the matrix. Mixing of activators such as sodium hydroxide and potassium silicate with silica-alumina of LD slag-fly ash mixture, geopolymeric structure were found to be developed. The effect of geo-polymerization behaviour and subsequent structural rearrangement has been studied using compressibility; shear strength and permeability tests followed by micro-graphical analysis. Densification in the mixture was observed along with an improvement of geotechnical properties due to the addition of LD slag. Due to suitable strength characteristics of these two waste materials as mixture, it can be used in the various construction field or may be used as a filling material in mine voids.

Keywords: LD slag, fly-ash, geopolymer, strength property, compressibility

Procedia PDF Downloads 363
205 Development of Milky Products Leavend by Kefir Grains with Reduced Lactose and Flavored with Tropical Fruit

Authors: A. L. Balieiro, D. S. Silveira, R. A. Santos, L. S. Freitas, O. L. S. De Alsina, A. S. Lima, C. M. F. Soares

Abstract:

The state of Sergipe has been emerging in milk production, mainly in the dairy basin located in the northeast of the state of the Brazil. However, this area concentrates the production of dairy, developing diverse products with higher aggregated value and scent and regional flavours. With this goal the present wok allows the development of dairy drinks with reduced lactose index, using kefir grains flavored with mangaba pulp. Initially, the removal of milk lactose was evaluated in adsorption columns completed with silica particles obtained by molecular impression technique, using sol ? gel method with the presence and absence of lactose biomolecule, molecular imprinted polymer (PIM) or pure matrix (MP), respectively. Then kefir grains were used for the development of dairy drinks flavored with regional fruits (mangaba). The products were analyzed sensorially, evaluated the probiotic potential and the removal of the lactose. Among the products obtained, the one that present best result in the sensorially was to the drink with removal PIM flavored of mangaba, for which around 60% of the testers indicated that would buy the new product.

Keywords: molecular imprinted polymer, milk, lactose, kefir

Procedia PDF Downloads 265
204 Evaluation of Labelling Conditions, Quality Control, and Biodistribution Study of 99mTc- D-Aminolevulinic Acid (5-ALA)

Authors: Kalimullah Khan, Samina Roohi, Mohammad Rafi, Rizwana Zahoor

Abstract:

Labeling of 5-Aminolevulinic acid (5-ALA) with 99 mTc was achieved by using tin chloride dihydrate (Sncl2.2H2O) as reducing agent. Radiochemical purity and labeling efficiency was determined by Whattman paper No.3 and instant thin layer chromatographic strips impregnated with silica gel (ITLC/SG). Labeling efficiency was dependent on many parameters such as amount of ligand, reducing agent, pH, and incubation time. Therefore, optimum conditions for maximum labeling were selected. Stability of 99 mTc- 5-ALA was also checked in fresh human serum. Tissue bio-distribution of 99 mTc-5-ALA was evaluated in Spargue Dawley rats. 5-ALA was 98% labeled with 99 mTc under optimum conditions, i.e. 100µg of 5-ALA, pH: 4, 10µg of Sncl2.2H2O and 30 minutes incubation at room temperature. 99 mTc labelled 5- ALA remained stable for 24 hours in human serum. Bio-distribution study (%ID/gm) in rats revealed that maximum accumulation of 99 mTc-5-ALA was in liver, spleen, stomach and intestine after half hour, 4 hours, and 24 hours. Significant activity in bladder and urine indicated urinary mode of excretion.

Keywords: 99mTc-ALA, aminolevulinic acid, quality control, radiopharmaceuticals

Procedia PDF Downloads 364
203 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 479
202 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 135
201 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 370
200 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete

Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap

Abstract:

This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.

Keywords: compressive strength, durability, high performance concrete, rice husk ash

Procedia PDF Downloads 314
199 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 411
198 Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand

Authors: Arash Poordana, Reza Ziaie Moayed

Abstract:

Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.

Keywords: unconfined compression test, bentonite, Bushehr, calcareous sand

Procedia PDF Downloads 100
197 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 132
196 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 310
195 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine

Abstract:

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Keywords: concrete recycling, geopolymer cement, fly ash, construction wastes

Procedia PDF Downloads 299
194 The Flashnews as a Commercial Session of Political Marketing: The Content Analysis of the Embedded Political Narratives in Non-Political Media Products

Authors: Zsolt Szabolcsi

Abstract:

Political communication in Hungary has undergone a significant change in the 2010s. One element of the transformation is the Flashnews. This media product was launched in March 2015 and since then 40-50 blocks are broadcasted, daily, on 5 channels. Flashnews blocks are condensed news sessions, containing the summary of political narratives. It starts with the introduction of the narrator, then, usually four news topics are presented and, finally, the narrator concludes the block. The block lasts only one minute and, therefore, it provides a blink session into the main narratives of political communication at the time. Beyond its rapid pace, what makes its avoidance difficult is that these blocks are always in the first position in the commercial break of a non-political media product. Although it is only one minute long, its significance is high. The content of the Flashnews reflects the main governmental narratives and, therefore, the Flashnews is part of the agenda-setting capacity of political communication. It reaches media consumers who have limited knowledge and interest in politics, and their use of media products is not politically related. For this audience, the Flashnews pops up in the same way as commercials. Due to its structure and appearance, the impact of Flashnews seems to be similar to commercials, imbedded into the break of media products. It activates existing knowledge constructs, builds up associational links and maintains their presence in a way that the recipient is not aware of the phenomenon. The research aims to examine the extent to which the Flashnews and the main news narratives are identical in their content. This aim is realized with the content analysis of the two news products by examining the Flashnews and the evening news during main sport events from 2016 to 2018. The initial hypothesis of the research is that Flashnews is a contribution to the news management technique for an effective articulation of political narratives in public service media channels.

Keywords: flashnews, political communication, political marketing, news management

Procedia PDF Downloads 115
193 Chemical Composition and Nutritional Value of Leaves and Pods of Leucaena Leucocephala, Prosopis Laevigata and Acacia Farnesiana in a Xerophyllous Shrubland

Authors: Miguel Mellado, Cecilia Zapata

Abstract:

Goats can be exploited in harsh environments due to their capacity to adjust to limited quantity and quality forage sources. In these environments, leguminous trees can be used as supplementary feeds as foliage and fruits of these trees can contribute to maintain or improve production efficiency in ruminants. The objective of this study was to determine the nutritional value of three leguminous trees heavily selected by goats in a xerophyllous shrubland. Chemical composition and in vitro dry matter disappearance (IVDMD) of leaves and pods from leucaena (Leucaena leucocephala), mesquite (Prosopis laevigata) and huisache (Acacia farnesiana) is presented. Crude protein (CP) ranged from 17.3% for leaves of huisache to 21.9% for leucaena. The neutral detergent fiber (NDF) content ranged from 39.0 to 40.3 with no difference among fodder threes. Across tree species, mean IVDMD was 61.6% for pods and 52.2% for leaves. IVDMD for leaves was highest (P < 0.01) for leucaena (54.9%) and lowest for huisache (47.3%). Condensed tannins in an acetonic extract were highest for leaves of huisache (45.3 mg CE/g DM) and lowest for mesquite (25.9 mg CE/g DM). Pods and leaves of huisache presented the highest number of secondary metabolites, mainly related to hydrobenzoic acid and flavonols; leucaena and mesquite presented mainly flavonols and anthocyanins. It was concluded that leaves and pods of leucaena, mesquite and huisache constitute valuable forages for ruminant livestock due to its low fiber, high CP levels, moderate in vitro fermentation characteristics and high mineral content. Keywords: Fodder tree; ruminants; secondary metabolites; minerals; tannins

Keywords: fodder tree, ruminants, secondary metabolites, minerals, tannins

Procedia PDF Downloads 121
192 Exposure Assessment for Worker Exposed to Heavy Metals during Road Marking Operations

Authors: Yin-Hsuan Wu, Perng-Jy Tsai, Ying-Fang Wang, Shun-Hui Chung

Abstract:

The present study was conducted to characterize exposure concentrations, concentrations deposited on the different respiratory regions, and resultant health risks associated with heavy metal exposures for road marking workers. Road marking workers of three similar exposure groups (SEGs) were selected, including the paint pouring worker, marking worker, and preparing worker. Personal exposure samples were collected using an inhalable dust sampler (IOM), and the involved particle size distribution samples were estimated using an eight-stage Marple personal cascade impactor during five working days. In total, 25 IOM samples and 20 Marple samples were collected. All collected samples were analyzed for their heavy metal contents using the ICP/MS. The resultant heavy metal particle size distributions were also used to estimate the fractions of particle deposited on the head airways (Chead), tracheobronchial (Cthorac) and alveolar regions (Cresp) of the exposed workers. In addition, Pb and Cr were selected to estimate the incremental cancer risk, and Zn, Ti, and Mo were selected to estimate the corresponding non-cancer risk in the present study. Results show that three heavy metals, including Pb, Cr, and Ti, were found with the highest concentrations for the SEG of the paint pouring worker (=0.585±2.98, 0.307±1.71, 0.902±2.99 μg/m³, respectively). For the fraction of heavy metal particle deposited on the respiratory tract, both alveolar and head regions were found with the highest values (=23-43% and 39-61%, respectively). For both SEGs of the paint pouring and marking, 51% of Cr, 59-61% of Zn, and 48-51% of Ti were found to be deposited on the alveolar region, and 41-43% of Pb was deposited on the head region. Finally, the incremental cancer risk for the SEGs of the paint pouring, marking, and preparing were found as 1.08×10⁻⁵, 2.78×10⁻⁶, and 2.20×10⁻⁶, respectively. In addition, the estimated non-cancer risk for the above three SEGs was found to be consistently less than unity. In conclusion, though the estimated non-cancer risk was less than unity, all resultant incremental cancer risk was greater than 10⁻⁶ indicating the abatement of workers’ exposure is necessary. It is suggested that strategies, including placing on the molten kettle, substitution the currently used paints for less heavy metal containing paints, and wearing fume protecting personal protective equipment can be considered in the future from reducing the worker’s exposure aspect.

Keywords: health risk assessment, heavy metal, respiratory track deposition, road marking

Procedia PDF Downloads 143