Search results for: Argos satellite telemetry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 786

Search results for: Argos satellite telemetry

396 Design of H-Shape X-band Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan H. Desai, Trushit Upadhyaya

Abstract:

This paper presents a new small electrically antenna rectangular X- band micro-strip patch antenna loaded with material Rogers RT/duroid 5870 (tm). The present discussion focuses on small Electrically antenna which are electrically small compared to wave length the performance of electrically small antenna are closely related to their electrical size, the gain can be increased to maintain the efficiency of the radiator. Basically micro-strip Patch antennas have been used in satellite communications and for their good characteristics such as lightness, low cost, and so on. Here in the design H- shape folded dipole, which increase the band width of the antenna.

Keywords: electrically small antennas, X-band application, antenna, micro-strip patch, frequency antenna, feed, gain

Procedia PDF Downloads 466
395 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform

Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem

Abstract:

Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.

Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal

Procedia PDF Downloads 251
394 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 469
393 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 538
392 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 64
391 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique

Authors: Manoj Gupta, Nirmendra Singh Bhadauria

Abstract:

Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.

Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion

Procedia PDF Downloads 606
390 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation

Procedia PDF Downloads 383
389 Co-Seismic Deformation Using InSAR Sentinel-1A: Case Study of the 6.5 Mw Pidie Jaya, Aceh, Earthquake

Authors: Jefriza, Habibah Lateh, Saumi Syahreza

Abstract:

The 2016 Mw 6.5 Pidie Jaya earthquake is one of the biggest disasters that has occurred in Aceh within the last five years. This earthquake has caused severe damage to many infrastructures such as schools, hospitals, mosques, and houses in the district of Pidie Jaya and surrounding areas. Earthquakes commonly occur in Aceh Province due to the Aceh-Sumatra is located in the convergent boundaries of the Sunda Plate subducted beneath the Indo-Australian Plate. This convergence is responsible for the intensification of seismicity in this region. The plates are tilted at a speed of 63 mm per year and the right lateral component is accommodated by strike- slip faulting within Sumatra, mainly along the great Sumatran fault. This paper presents preliminary findings of InSAR study aimed at investigating the co-seismic surface deformation pattern in Pidie Jaya, Aceh-Indonesia. Coseismic surface deformation is rapid displacement that occurs at the time of an earthquake. Coseismic displacement mapping is required to study the behavior of seismic faults. InSAR is a powerful tool for measuring Earth surface deformation to a precision of a few centimetres. In this study, two radar images of the same area but at two different times are required to detect changes in the Earth’s surface. The ascending and descending Sentinel-1A (S1A) synthetic aperture radar (SAR) data and Sentinels application platform (SNAP) toolbox were used to generate SAR interferogram image. In order to visualize the InSAR interferometric, the S1A from both master (26 Nov 2016) and slave data-sets (26 Dec 2016) were utilized as the main data source for mapping the coseismic surface deformation. The results show that the fringes of phase difference have appeared in the border region as a result of the movement that was detected with interferometric technique. On the other hand, the dominant fringes pattern also appears near the coastal area, this is consistent with the field investigations two days after the earthquake. However, the study has also limitations of resolution and atmospheric artefacts in SAR interferograms. The atmospheric artefacts are caused by changes in the atmospheric refractive index of the medium, as a result, has limitation to produce coherence image. Low coherence will be affected the result in creating fringes (movement can be detected by fringes). The spatial resolution of the Sentinel satellite has not been sufficient for studying land surface deformation in this area. Further studies will also be investigated using both ALOS and TerraSAR-X. ALOS and TerraSAR-X improved the spatial resolution of SAR satellite.

Keywords: earthquake, InSAR, interferometric, Sentinel-1A

Procedia PDF Downloads 196
388 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality

Authors: Alisa Salimova, Jiane Zuo, Christopher Homer

Abstract:

The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.

Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing

Procedia PDF Downloads 113
387 Design Analysis of Tilting System for Spacecraft Transportation

Authors: P. Naresh, Amir Iqbal

Abstract:

Satellite transportation is inevitable step during the course of integration testing and launch. Large satellites are transported in horizontal mode due to constraints on commercially available cargo bay dimensions & on road obstacles. To facilitate transportation of bigger size spacecraft in horizontal mode a tilting system is released. This tilting system consists of tilt table, columns, hinge pin, angular contact bearings, slewing bearing and linear actuators. The tilting system is very compact and easy to use however it is also serves the purpose of a fixture so it is of immense interest to know the stress and fundamental frequency of the system in transportation configuration. This paper discusses design aspects and finite element analysis of tilting system-cum-fixture using Hypermesh/Nastran.

Keywords: tilt table, column, slewing bearing, stress, modal analysis

Procedia PDF Downloads 574
386 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 128
385 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 456
384 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships

Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming

Abstract:

The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.

Keywords: space lab, rendezvous and docking, data management, software system

Procedia PDF Downloads 368
383 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform. The ortho-image formed from the process is corrected for lens distortion, topographic relief, and camera tilt. This can be used to measure true distances, because it is an accurate representation of the Earth’s surface. Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired at the UAV platform. This can only be achieved by comparing such video imagery with an existing digital map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The video image sequences from the UAV platform must be geo-registered, that is, each video frame must carry the necessary camera information before performing the ortho-rectification process. Each rectified image frame can then be mosaicked together to form a seamless image map covering the selected area. This can then be used for comparison with an existing map for geo-referencing. In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) Decompilation of video stream into individual frames; (2) Finding of interior camera orientation parameters; (3) Finding the relative exterior orientation parameters for each video frames with respect to each other; (4) Finding the absolute exterior orientation parameters, using self-calibration adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a 2-D planimetric mapping, which can be compared with a well referenced existing digital map for the purpose of georeferencing and aerial surveillance. A test field located in Abuja, Nigeria was used for testing our method. Fifteen minutes video and telemetry data were collected using the UAV and the data collected were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images are more reliable than those from original perspective photographs when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 meters.

Keywords: geo-referencing, ortho-rectification, video frame, self-calibration

Procedia PDF Downloads 478
382 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel

Authors: Selami Şahin

Abstract:

In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.

Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication

Procedia PDF Downloads 401
381 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 357
380 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 546
379 A Comparative Study of Motion Events Encoding in English and Italian

Authors: Alfonsina Buoniconto

Abstract:

The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.

Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type

Procedia PDF Downloads 260
378 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement

Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad

Abstract:

An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.

Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter

Procedia PDF Downloads 399
377 Colonization Pattern and Growth of Reintroduced Tiger (Panthera tigris) Population at Central India

Authors: M. S. Sarkar, J. A. Johnson, S. Sen, G. K. Saha, K. Ramesh

Abstract:

There is growing recognition of several important roles played by tigers for maintaining sustainable biodiversity at diverse ecosystems in South and South-East Asia. Only <3200 individuals are left in the wild because of poaching and habitat loss. Thus, restoring wild population is an emerging as well as important conservation initiative, but such efforts still remain challenging due to their elusive and solitary behavior. After careful translocation of few individuals, how reintroduced individuals colonize into suitable habitat and achieve stable stage population through reproduction is vital information for forest managers and policy makers of its 13 distribution range countries. Four wild and two captive radio collared tigers were reintroduced at Panna Tiger Reserve, Madhya-pradesh, India during 2009-2014. We critically examined their settlement behavior and population growth over the period. Results from long term telemetry data showed that male explored larger areas rapidly in short time span, while females explored small area in long time period and with significant high rate of movement in both sexes during exploratory period. Significant difference in home range sizes of tigers were observed in exploratory and settlement period. Though all reintroduced tigers preferred densely vegetated undisturbed forest patches within the core area of tiger reserve, a niche based k select analysis showed that individual variation in habitat selection was prominent among reintroduced tigers. Total 18 litter of >42 known cubs were born with low mortality rate, high maternity rate, high observed growth rate and short generation time in both the sexes. The population achieved its carrying capacity in a very short time span, marking success of this current tiger conservation programme. Our study information could provide significant insights on the tiger biology of translocated tigers with implication for future conservation strategies that consider translocation based recovery in their range countries.

Keywords: reintroduction, tiger, home range, demography

Procedia PDF Downloads 219
376 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 145
375 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 141
374 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
373 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 127
372 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 125
371 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 499
370 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm

Authors: Shafqat Ullah Khan, Ammar Nasir

Abstract:

Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.

Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays

Procedia PDF Downloads 81
369 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake

Authors: Zhang Xin

Abstract:

Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.

Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS

Procedia PDF Downloads 127
368 Elevating Environmental Impact Assessment through Remote Sensing in Engineering

Authors: Spoorthi Srupad

Abstract:

Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors.

Keywords: environmental impact assessment, engineering applications, sustainability, environmental monitoring, remote sensing, geographic information systems, environmental management

Procedia PDF Downloads 92
367 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 402