Search results for: component prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4688

Search results for: component prediction

578 Variation of Carbon Isotope Ratio (δ13C) and Leaf-Productivity Traits in Aquilaria Species (Thymelaeceae)

Authors: Arlene López-Sampson, Tony Page, Betsy Jackes

Abstract:

Aquilaria genus produces a highly valuable fragrant oleoresin known as agarwood. Agarwood forms in a few trees in the wild as a response to injure or pathogen attack. The resin is used in perfume and incense industry and medicine. Cultivation of Aquilaria species as a sustainable source of the resin is now a common strategy. Physiological traits are frequently used as a proxy of crop and tree productivity. Aquilaria species growing in Queensland, Australia were studied to investigate relationship between leaf-productivity traits with tree growth. Specifically, 28 trees, representing 12 plus trees and 16 trees from yield plots, were selected to conduct carbon isotope analysis (δ13C) and monitor six leaf attributes. Trees were grouped on four diametric classes (diameter at 150 mm above ground level) ensuring the variability in growth of the whole population was sampled. Model averaging technique based on the Akaike’s information criterion (AIC) was computed to identify whether leaf traits could assist in diameter prediction. Carbon isotope values were correlated with height classes and leaf traits to determine any relationship. In average four leaves per shoot were recorded. Approximately one new leaf per week is produced by a shoot. Rate of leaf expansion was estimated in 1.45 mm day-1. There were no statistical differences between diametric classes and leaf expansion rate and number of new leaves per week (p > 0.05). Range of δ13C values in leaves of Aquilaria species was from -25.5 ‰ to -31 ‰ with an average of -28.4 ‰ (± 1.5 ‰). Only 39% of the variability in height can be explained by δ13C in leaf. Leaf δ13C and nitrogen content values were positively correlated. This relationship implies that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations (ci/ca) and less depleted values of 13C. Most of the predictor variables have a weak correlation with diameter (D). However, analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could likely explain growth in Aquilaria species are petiole length (PeLen), values of δ13C (true13C) and δ15N (true15N), leaf area (LA), specific leaf area (SLA) and number of new leaf produced per week (NL.week). The model constructed with PeLen, true13C, true15N, LA, SLA and NL.week could explain 45% (R2 0.4573) of the variability in D. The leaf traits studied gave a better understanding of the leaf attributes that could assist in the selection of high-productivity trees in Aquilaria.

Keywords: 13C, petiole length, specific leaf area, tree growth

Procedia PDF Downloads 509
577 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 124
576 The Influence of Destination Image on Tourists' Experience at Osun Osogbo World Heritage Site

Authors: Bola Adeleke, Kayode Ogunsusi

Abstract:

Heritage sites have evolved to preserve culture and heritage and also to educate and entertain tourists. Tourist travel decisions and behavior are influenced by destination image and value of the experience of tourists. Perceived value is one of the important tools for securing a competitive edge in tourism destinations. The model of Ritchie and Crouch distinguished 36 attributes of competitiveness which are classified into five factors which are quality of experience, touristic attractiveness, environment and infrastructure, entertainment/outdoor activities and cultural traditions. The study extended this model with a different grouping of the determinants of destination competitiveness. The theoretical framework used for this study assumes that apart from attractions already situated in the grove, satisfaction with destination common service, and entertainment and events, can all be used in creating a positive image for/and in attracting customers (destination selection) to visit Osun Sacred Osogbo Grove during and after annual celebrations. All these will impact positively on travel experience of customers as well as their spiritual fulfillment. Destination image has a direct impact on tourists’ satisfaction which consequently impacts on tourists’ likely future behavior on whether to revisit a cultural destination or not. The study investigated the variables responsible for destination image competitiveness of the Heritage Site; assessed the factors enhancing the destination image; and evaluated the perceived value realized by tourists from their cultural experience at the grove. A complete enumeration of tourists above 18 years of age who visited the Heritage Site within the month of March and April 2017 was taken. 240 respondents, therefore, were used for the study. The structured questionnaire with 5 Likert scales was administered. Five factors comprising 63 variables were used to determine the destination image competitiveness through principal component analysis, while multiple regressions were used to evaluate perceived value of tourists at the grove. Results revealed that 11 out of the 12 variables determining the destination image competitiveness were significant in attracting tourists to the grove. From the R-value, all factors predicted tourists’ value of experience strongly (R= 0.936). The percentage variance of customer value was explained by 87.70% of the variance of destination common service, entertainment and event satisfaction, travel environment satisfaction and spiritual satisfaction, with F-value being significant at 0.00. Factors with high alpha value contributed greatly to adding value to enhancing destination and tourists’ experience. 11 variables positively predicted tourist value with significance. Managers of Osun World Heritage Site should improve on variables critical to adding values to tourists’ experience.

Keywords: competitiveness, destination image, Osun Osogbo world heritage site, tourists

Procedia PDF Downloads 187
575 Effect of Planting Date on Quantitative and Qualitative Characteristics of Different Bread Wheat and Durum Cultivars

Authors: Mahdi Nasiri Tabrizi, A. Dadkhah, M. Khirkhah

Abstract:

In order to study the effect of planting on yield, yield components and quality traits in bread and durum wheat varieties, a field split-plot experiment based on complete randomized design with three replications was conducted in Agricultural and Natural Resources Research Center of Razavi Khorasan located in city of Mashhad during 2013-2014. Main factor were consisted of five sowing dates (first October, fifteenth December, first March, tenth March, twentieth March) and as sub-factors consisted of different bread wheat (Bahar, Pishgam, Pishtaz, Mihan, Falat and Karim) and two durum wheat (Dena and Dehdasht). According to results of analysis variance the effect of planting date was significant on all examined traits (grain yield, biological yield, harvest index, number of grain per spike, thousands kernel weight, number of spike per square meter, plant height, the number of days to heading, the number of days to maturity, during the grain filling period, percentage of wet gluten, percentage of dry gluten, gluten index, percentage of protein). By delay in planting, majority of traits significantly decreased, except quality traits (percentage of wet gluten, percentage of dry gluten and percentage of protein). Results of means comparison showed, among planting date the highest grain yield and biological yield were related to first planting date (Octobr) with mean of production of 5/6 and 1/17 tons per hectare respectively and the highest bread quality (gluten index) with mean of 85 and percentage of protein with mean of 13% to fifth planting date also the effect of genotype was significant on all traits. The highest grain yield among of studied wheat genotypes was related to Dehdasht cultivar with an average production of 4.4 tons per hectare. The highest protein percentage and bread quality (gluten index) were related to Dehdasht cultivar with 13.4% and Falat cultivar with number of 90 respectively. The interaction between cultivar and planting date was significant on all traits and different varieties had different trend for these traits. The highest grain yield was related to first planting date (October) and Falat cultivar with an average of production of 6/7 tons per hectare while in grain yield did not show a significant different with Pishtas and Mihan cultivars also the most of gluten index (bread quality index) and protein percentage was belonged to the third planting date and Karim cultivar with 7.98 and Dena cultivar with 7.14% respectively.

Keywords: yield component, yield, planting date, cultivar, quality traits, wheat

Procedia PDF Downloads 430
574 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 183
573 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 8
572 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation

Authors: Afshin Kadri

Abstract:

Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.

Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter

Procedia PDF Downloads 76
571 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 256
570 Delving into the Concept of Social Capital in the Smart City Research

Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh

Abstract:

Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.

Keywords: smart city, urban digitalisation, ICT, social capital

Procedia PDF Downloads 12
569 The Importance of the Phases of Information, Diagnosis, Planning, Intervention and Management in a Historic Center

Authors: Giovanni Duran Polo

Abstract:

Demonstrate the importance of the stages such as Information, Diagnosis, Management, and Intervention is fundamental to have a historical, live, and quality inhabited center. One of the major actions to take is to promote the concept of the management of a historic center with harmonious development. For that, concerned actors should strengthen the concept that said historic center may be the neighborhood of all and for all. The centers of historical cities, presented as any other urban area, social, environmental issues etc; yet they get added value that have no other city neighborhoods. The equity component, either by the urban plan, or environmental quality offered properties of architectural, landscape or some land uses are the differentiating element, while the tool that makes them attractive face pressure exerted by new housing developments or shopping centers. That's why through the experience of working in historical centers, they are declared the actions in heritage areas. This paper will show how the encounter with each of these places are trying to take the phases of information, to gather all the data needed to be closer to the territory with specific data, diagnosis; which allowed the actors to see what state they were, felt how the heart is related to the rest of the city, show what problems affected the situation and what potential it had to compete in a global market. Also, to discuss the importance of the organization, as it is legal and normative basis for it have an order and a concept, when you know what can and what cannot, in an area where the citizen has many myth or history, when he wanted to intervene in protected buildings. It is also appropriate to show how it could develop the intervention phase, where the shares on the tangible elements and intervention for the protection of the heritage property are executed. The management is the final phase which will carry out all that was raised on paper, it's time to orient, explain, persuade, promote, and encourage citizens to take care of the heritage. It is profitable and also an obligation and it is not an insurmountable burden. It has to be said this is the time to pull all the cards to make the historical center and heritage becoming more alive today. It is the moment to make it more inhabited and to transformer it into a quality place, so citizens will cherish and understand the importance of such a place. Inhabited historical centers, endowments and equipment required, with trade quality, with constant cultural offer, with well-preserved buildings and tidy, modern and safe public spaces are always attractive for tourism, but first of all, the place should be conceived for citizens, otherwise everything will be doomed to failure.

Keywords: development, diagnosis, heritage historic center, intervention, management, patrimony

Procedia PDF Downloads 396
568 Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue

Authors: A. Y. Tsidulko, T. M. Pankova, E. V. Grigorieva

Abstract:

High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243)

Keywords: dexamthasone, extracellular matrix, glioma, proteoglycan

Procedia PDF Downloads 199
567 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
566 Effects of Forest Therapy on Depression among Healthy Adults 

Authors: Insook Lee, Heeseung Choi, Kyung-Sook Bang, Sungjae Kim, Minkyung Song, Buhyun Lee

Abstract:

Backgrounds: A clearer and comprehensive understanding of the effects of forest therapy on depression is needed for further refinements of forest therapy programs. The purpose of this study was to review the literature on forest therapy programs designed to decrease the level of depression among adults to evaluate current forest therapy programs. Methods: This literature review was conducted using various databases including PubMed, EMBASE, CINAHL, PsycArticle, KISS, RISS, and DBpia to identify relevant studies published up to January 2016. The two authors independently screened the full text articles using the following criteria: 1) intervention studies assessing the effects of forest therapy on depression among healthy adults ages 18 and over; 2) including at least one control group or condition; 3) being peer-reviewed; and 4) being published either in English. The Scottish Intercollegiate Guideline Network (SIGN) measurement tool was used to assess the risk of bias in each trial. Results: After screening current literature, a total of 14 articles (English: 6, Korean: 8) were included in the present review. None of the studies used randomized controlled (RCT) study design and the sample size ranged from 11 to 300. Walking in the forest and experiencing the forest using the five senses was the key component of the forest therapy that was included in all studies. The majority of studies used one-time intervention that usually lasted a few hours or half-day. The most widely used measure for depression was Profile of Mood States (POMS). Most studies used self-reported, paper-and-pencil tests, and only 5 studies used both paper-and-pencil tests and physiological measures. Regarding the quality assessment based on the SIGN criteria, only 3 articles were rated ‘acceptable’ and the rest of the 14 articles were rated ‘low quality.’ Regardless of the diversity in format and contents of forest therapies, most studies showed a significant effect of forest therapy in curing depression. Discussions: This systematic review showed that forest therapy is one of the emerging and effective intervention approaches for decreasing the level of depression among adults. Limitations of the current programs identified from the review were as follows; 1) small sample size; 2) a lack of objective and comprehensive measures for depression; and 3) inadequate information about research process. Futures studies assessing the long-term effect of forest therapy on depression using rigorous study designs are needed.

Keywords: forest therapy, systematic review, depression, adult

Procedia PDF Downloads 292
565 A Comparison of qCON/qNOX to the Bispectral Index as Indices of Antinociception in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway

Authors: Roya Yumul, Ofelia Loani Elvir-Lazo, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

BACKGROUND: An objective means for monitoring the anti-nociceptive effects of perioperative medications has long been desired as a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively. To this end, electroencephalogram (EEG) based tools including BIS and qCON were designed to provide information about the depth of sedation while qNOX was produced to inform on the degree of antinociception. The goal of this study was to compare the reliability of qCON/qNOX to BIS as specific indicators of response to nociceptive stimulation. METHODS: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board (IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to the endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed on all patients prior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. RESULTS: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from 74 ±13 mm Hg at baseline to 84 ± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76 ± 12 BPM at baseline to 80 ± 13 BPM during noxious stimuli [p=0.078] respectively). CONCLUSION: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices

Keywords: antinociception, BIS, general anesthesia, LMA, qCON/qNOX

Procedia PDF Downloads 137
564 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest

Authors: Damian Czubak

Abstract:

The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.

Keywords: classification, combustible material, flammable vegetation, Norway spruce

Procedia PDF Downloads 93
563 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 353
562 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 163
561 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model

Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras

Abstract:

Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.

Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish

Procedia PDF Downloads 328
560 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 77
559 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 11
558 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 248
557 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 84
556 Using the Micro Computed Tomography to Study the Corrosion Behavior of Magnesium Alloy at Different pH Values

Authors: Chia-Jung Chang, Sheng-Che Chen, Ming-Long Yeh, Chih-Wei Wang, Chih-Han Chang

Abstract:

Introduction and Motivation: In recent years, magnesium alloy is used to be a kind of medical biodegradable materials. Magnesium is an essential element in the body and is efficiently excreted by the kidneys. Furthermore, the mechanical properties of magnesium alloy is closest to human bone. However, in some cases magnesium alloy corrodes so quickly that it would release hydrogen on surface of implant. The other product is hydroxide ion, it can significantly increase the local pH value. The above situations may have adverse effects on local cell functions. On the other hand, nowadays magnesium alloy corrode too fast to maintain the function of implant until the healing of tissue. Therefore, much recent research about magnesium alloy has focused on controlling the corrosion rate. The in vitro corrosion behavior of magnesium alloys is affected by many factors, and pH value is one of factors. In this study, we will study on the influence of pH value on the corrosion behavior of magnesium alloy by the Micro-CT (micro computed tomography) and other instruments.Material and methods: In the first step, we make some guiding plates for specimens of magnesium alloy AZ91 by Rapid Prototyping. The guiding plates are able to be a standard for the degradation of specimen, so that we can use it to make sure the position of specimens in the CT image. We can also simplify the conditions of degradation by the guiding plates.In the next step, we prepare the solution with different pH value. And then we put the specimens into the solution to start the corrosion test. The CT image, surface photographs and weigh are measured on every twelve hours. Results: In the primary results of the test, we make sure that CT image can be a way to quantify the corrosion behavior of magnesium alloy. Moreover we can observe the phenomenon that corrosion always start from some erosion point. It’s possibly based on some defect like dislocations and the voids with high strain energy in the materials. We will deal with the raw data into Mass Loss (ML) and corrosion rate by CT image, surface photographs and weigh in the near future. Having a simple prediction, the pH value and degradation rate will be negatively correlated. And we want to find out the equation of the pH value and corrosion rate. We also have a simple test to simulate the change of the pH value in the local region. In this test the pH value will rise to 10 in a short time. Conclusion: As a biodegradable implant for the area with stagnating body fluid flow in the human body, magnesium alloy can cause the increase of local pH values and release the hydrogen. Those may damage the human cell. The purpose of this study is finding out the equation of the pH value and corrosion rate. After that we will try to find the ways to overcome the limitations of medical magnesium alloy.

Keywords: magnesium alloy, biodegradable materials, corrosion, micro-CT

Procedia PDF Downloads 457
555 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling

Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

Abstract:

The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.

Keywords: material point method, woven fabric composites, forming, material handling

Procedia PDF Downloads 181
554 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 38
553 Effect of Malnutrition at Admission on Length of Hospital Stay among Adult Surgical Patients in Wolaita Sodo University Comprehensive Specialized Hospital, South Ethiopia: Prospective Cohort Study, 2022

Authors: Yoseph Halala Handiso, Zewdi Gebregziabher

Abstract:

Background: Malnutrition in hospitalized patients remains a major public health problem in both developed and developing countries. Despite the fact that malnourished patients are more prone to stay longer in hospital, there is limited data regarding the magnitude of malnutrition and its effect on length of stay among surgical patients in Ethiopia, while nutritional assessment is also often a neglected component of the health service practice. Objective: This study aimed to assess the prevalence of malnutrition at admission and its effect on the length of hospital stay among adult surgical patients in Wolaita Sodo University Comprehensive Specialized Hospital, South Ethiopia, 2022. Methods: A facility-based prospective cohort study was conducted among 398 adult surgical patients admitted to the hospital. Participants in the study were chosen using a convenient sampling technique. Subjective global assessment was used to determine the nutritional status of patients with a minimum stay of 24 hours within 48 hours after admission (SGA). Data were collected using the open data kit (ODK) version 2022.3.3 software, while Stata version 14.1 software was employed for statistical analysis. The Cox regression model was used to determine the effect of malnutrition on the length of hospital stay (LOS) after adjusting for several potential confounders taken at admission. Adjusted hazard ratio (HR) with a 95% confidence interval was used to show the effect of malnutrition. Results: The prevalence of hospital malnutrition at admission was 64.32% (95% CI: 59%-69%) according to the SGA classification. Adult surgical patients who were malnourished at admission had higher median LOS (12 days: 95% CI: 11-13) as compared to well-nourished patients (8 days: 95% CI: 8-9), means adult surgical patients who were malnourished at admission were at higher risk of reduced chance of discharge with improvement (prolonged LOS) (AHR: 0.37, 95% CI: 0.29-0.47) as compared to well-nourished patients. Presence of comorbidity (AHR: 0.68, 95% CI: 0.50-90), poly medication (AHR: 0.69, 95% CI: 0.55-0.86), and history of admission (AHR: 0.70, 95% CI: 0.55-0.87) within the previous five years were found to be the significant covariates of the length of hospital stay (LOS). Conclusion: The magnitude of hospital malnutrition at admission was found to be high. Malnourished patients at admission had a higher risk of prolonged length of hospital stay as compared to well-nourished patients. The presence of comorbidity, polymedication, and history of admission were found to be the significant covariates of LOS. All stakeholders should give attention to reducing the magnitude of malnutrition and its covariates to improve the burden of LOS.

Keywords: effect of malnutrition, length of hospital stay, surgical patients, Ethiopia

Procedia PDF Downloads 65
552 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 125
551 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 114
550 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro

Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich

Abstract:

Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.

Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve

Procedia PDF Downloads 150
549 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141