Search results for: student-centered teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8490

Search results for: student-centered teaching and learning

4410 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale

Authors: Wen-Wei Chiang

Abstract:

In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.

Keywords: flow experience, positive psychology, questionnaire, science learning

Procedia PDF Downloads 122
4409 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 650
4408 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 135
4407 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 372
4406 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 106
4405 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, Heat Demand, Renewable , Pollution

Procedia PDF Downloads 254
4404 Knowledge-Attitude-Practice Survey Regarding High Alert Medication in a Teaching Hospital in Eastern India

Authors: D. S. Chakraborty, S. Ghosh, A. Hazra

Abstract:

Objective: Medication errors are a reality in all settings where medicines are prescribed, dispensed and used. High Alert Medications (HAM) are those that bear a heightened risk of causing significant patient harm when used in error. We conducted a knowledge-attitude-practice survey, among residents working in a teaching hospital, to assess the ground situation with regard to the handling of HAM. Methods: We plan to approach 242 residents among the approximately 600 currently working in the hospital through purposive sampling. Residents in all disciplines (clinical, paraclinical and preclinical) are being targeted. A structured questionnaire that has been pretested on 5 volunteer residents is being used for data collection. The questionnaire is being administered to residents individually through face-to-face interview, by two raters, while they are on duty but not during rush hours. Results: Of the 156 residents approached so far, data from 140 have been analyzed, the rest having refused participation. Although background knowledge exists for the majority of respondents, awareness levels regarding HAM are moderate, and attitude is non-uniform. The number of respondents correctly able to identify most ( > 80%) HAM in three common settings– accident and emergency, obstetrics and intensive care unit are less than 70%. Several potential errors in practice have been identified. The study is ongoing. Conclusions: Situation requires corrective action. There is an urgent need for improving awareness regarding HAM for the sake of patient safety. The pharmacology department can take the lead in designing awareness campaign with support from the hospital administration.

Keywords: high alert medication, medication error, questionnaire, resident

Procedia PDF Downloads 133
4403 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 31
4402 Banning Gender: Movements to Suppress Gender Studies in the U.S. and Global Contexts

Authors: Tracey Jean Boisseau

Abstract:

In the United States and around the world, we see liberal democracies attacked, from within and without, on a number of grounds. One of the primary assaults on the liberal ideology of feminism has been to ban or severely curtail the teaching of and scholarship on gender as constructed rather than as a biological and binarist component of human identity. On every continent, women’s and gender studies at the university level have become targets of rightwing movements aligning with authoritarian regimes to suppress queer and trans people as well as feminist scholars and academics who define gender as fluid, contingent on culture, and as reflective of a political commitment rather than timeless, sacred, natural, biological, or god-given. Rightwing movements calling for an end to gender studies have put already-marginalized academic and scholarly projects under new scrutiny, in some cases resulting in the dismantlement of long-standing women’s and gender studies programs. This paper evaluates the cross-cultural effects such movements have had on our discipline worldwide and documents the strategic responses engaged in by gender studies scholars and leaders to resist the erasure of our field. Evidence is drawn from surveys of thousands of programs and dozens of interviews conducted in the past year with gender studies scholars, administrators, and practitioners. This paper’s main objective is to highlight the international linkages between movements aiming to suppress or erase gender studies as a field of research and teaching and to identify collaborative responses and promising solutions that can protect our discipline from these assaults.

Keywords: anti-feminist, anti-LGBTQ, authoritarianism, movements, gender studies, globalization

Procedia PDF Downloads 80
4401 Music Education in Aged Care: Positive Ageing through Instrumental Music Learning

Authors: Ellina Zipman

Abstract:

This research investigates the place of music education in aged care facilities through the implementation of a program of regular piano lessons for residents. Using a qualitative case study methodology, the research explores aged care residents’ experiences in learning to play the piano. Since the aged care homes are unlikely places for formal learning and since older adults, especially in residential care, are not considered likely candidates for learning, this research opens the door for innovative and transformative thinking about where and to whom educational programs can be delivered. By addressing the educational needs of residents in aged care facilities, this research fills the gap in the literature. The research took place in Australia in two of Melbourne’s residential aged care facilities, engaging two residents (a nonagenarian female and an octogenarian male) to participate in 12-months weekly individual piano lessons. The data was collected through video recording of lessons, observations, interviews, emails, and a reflective journal. Data analysis was done using Nvivo and hard copy analysis with identifications of themes. The case studies revealed that passion for music was a major driver in participants’ motivation to engage in a long-term piano lessons program. This participation led to experiences of positive emotions, positive attitude, successes and challenges, the exercise of control, maintaining and building new relationships, improved self-confidence through autonomy and independent skills development, and discovering new identities through finding a new purpose and new roles in life. Speaking through participants’ voices, this research project demonstrates the importance of music education for older adults and hopes to influence transformation in the residential aged care sector.

Keywords: adult music education, quality of life, passion, positive ageing, wellbeing

Procedia PDF Downloads 89
4400 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 111
4399 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 251
4398 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 111
4397 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 94
4396 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 354
4395 A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering

Authors: Michael Johnson, Vincenzo Oliveri

Abstract:

This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed.

Keywords: problem-based learning, interdisciplinary, engineering, CanSATs

Procedia PDF Downloads 132
4394 Language Activation Theory: Unlocking Bilingual Language Processing

Authors: Leorisyl D. Siarot

Abstract:

It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined.

Keywords: bilingualism, psycholinguistics, second language learning, languages

Procedia PDF Downloads 517
4393 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 106
4392 Children and Communities Benefit from Mother-Tongue Based Multi-Lingual Education

Authors: Binay Pattanayak

Abstract:

Multilingual state, Jharkhand is home to more than 19 tribal and regional languages. These are used by more than 33 communities in the state. The state has declared 12 of these languages as official languages of the state. However, schools in the state do not recognize any of these community languages even in early grades! Children, who speak in their mother tongues at home, local market and playground, find it very difficult to understand their teacher and textbooks in school. They fail to acquire basic literacy and numeracy skills in early grades. Out of frustration due to lack of comprehension, the majority of children leave school. Jharkhand sees the highest dropout in early grades in India. To address this, the state under the guidance of the author designed a mother tongue based pre-school education programme named Bhasha Puliya and bilingual picture dictionaries in 9 tribal and regional mother tongues of children. This contributed significantly to children’s school readiness in the school. Followed by this, the state designed a mother-tongue based multilingual education programme (MTB-MLE) for multilingual context. The author guided textbook development in 5 tribal (Santhali, Mundari, Ho, Kurukh and Kharia) and two regional (Odia and Bangla) languages. Teachers and community members were trained for MTB-MLE in around 1,000 schools of the concerned language pockets. Community resource groups were constituted along with their academic calendars in each school to promote story-telling, singing, painting, dancing, riddles, etc. with community support. This, on the one hand, created rich learning environments for children. On the other hand, the communities have discovered a great potential in the process of developing a wide variety of learning materials for children in own mother-tongue using their local stories, songs, riddles, paintings, idioms, skits, etc. as a process of their literary, cultural and technical enrichment. The majority of children are acquiring strong early grade reading skills (basic literacy and numeracy) in grades I-II thereby getting well prepared for higher studies. In a phased manner they are learning Hindi and English after 4-5 years of MTB-MLE using the foundational language learning skills. Community members have started designing new books, audio-visual learning materials in their mother-tongues seeing a great potential for their cultural and technological rejuvenation.

Keywords: community resource groups, MTB-MLE, multilingual, socio-linguistic survey, learning

Procedia PDF Downloads 200
4391 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students

Authors: Majed A. Alsalem

Abstract:

In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.

Keywords: deaf and hard of hearing, digital books, literacy, technology

Procedia PDF Downloads 493
4390 Future Sustainable Mobility for Colorado

Authors: Paolo Grazioli

Abstract:

In this paper, we present the main results achieved during an eight-week international design project on Colorado Future Sustainable Mobilitycarried out at Metropolitan State University of Denver. The project was born with the intention to seize the opportunity created by the Colorado government’s plan to promote e-bikes mobility by creating a large network of dedicated tracks. The project was supported by local entrepreneurs who offered financial and professional support. The main goal of the project was to engage design students with the skills to design a user-centered, original vehicle that would satisfy the unarticulated practical and emotional needs of “Gen Z” users by creating a fun, useful, and reliablelife companion that would helps users carry out their everyday tasks in a practical and enjoyable way. The project was carried out with the intention of proving the importance of the combination of creative methods with practical design methodologies towards the creation of an innovative yet immediately manufacturable product for a more sustainable future. The final results demonstrate the students' capability to create innovative and yet manufacturable products and, especially, their ability to create a new design paradigm for future sustainable mobility products. The design solutions explored n the project include collaborative learning and human-interaction design for future mobility. The findings of the research led students to the fabrication of two working prototypes that will be tested in Colorado and developed for manufacturing in the year 2024. The project showed that collaborative design and project-based teaching improve the quality of the outcome and can lead to the creation of real life, innovative products directly from the classroom to the market.

Keywords: sustainable transportation design, interface design, collaborative design, user -centered design research, design prototyping

Procedia PDF Downloads 102
4389 Engage, Connect, Empower: Agile Approach in the University Students' Education

Authors: D. Bjelica, T. Slavinski, V. Vukimrovic, D. Pavlovic, D. Bodroza, V. Dabetic

Abstract:

Traditional methods and techniques used in higher education may be significantly persuasive on the university students' perception about quality of the teaching process. Students’ satisfaction with the university experience may be affected by chosen educational approaches. Contemporary project management trends recognize agile approaches' beneficial, so modern practice highlights their usage, especially in the IT industry. A key research question concerns the possibility of applying agile methods in youth education. As agile methodology pinpoint iteratively-incremental delivery of results, its employment could be remarkably fruitful in education. This paper demonstrates the agile concept's application in the university students’ education through the continuous delivery of student solutions. Therefore, based on the fundamental values and principles of the agile manifest, paper will analyze students' performance and learned lessons in their encounter with the agile environment. The research is based on qualitative and quantitative analysis that includes sprints, as preparation and realization of student tasks in shorter iterations. Consequently, the performance of student teams will be monitored through iterations, as well as the process of adaptive planning and realization. Grounded theory methodology has been used in this research, as so as descriptive statistics and Man Whitney and Kruskal Wallis test for group comparison. Developed constructs of the model will be showcase through qualitative research, then validated through a pilot survey, and eventually tested as a concept in the final survey. The paper highlights the variability of educational curricula based on university students' feedbacks, which will be collected at the end of every sprint and indicates to university students' satisfaction inconsistency according to approaches applied in education. Values delivered by the lecturers will also be continuously monitored; thus, it will be prioritizing in order to students' requests. Minimal viable product, as the early delivery of results, will be particularly emphasized in the implementation process. The paper offers both theoretical and practical implications. This research contains exceptional lessons that may be applicable by educational institutions in curriculum creation processes, or by lecturers in curriculum design and teaching. On the other hand, they can be beneficial regarding university students' satisfaction increscent in respect of teaching styles, gained knowledge, or even educational content.

Keywords: academic performances, agile, high education, university students' satisfaction

Procedia PDF Downloads 134
4388 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 60
4387 Gamipulation: Exploring Covert Manipulation through Gamification in the Context of Education

Authors: Aguiar-Castillo Lidia, Perez-Jimenez Rafael

Abstract:

The integration of gamification in educational settings aims to enhance student engagement and motivation through game design elements in learning activities. This paper introduces "Gamipulation," the subtle manipulation of students via gamification techniques serving hidden agendas without explicit consent. It highlights the need to distinguish between beneficial and exploitative uses of gamification in education, focusing on its potential to psychologically manipulate students for purposes misaligned with their best interests. Through a literature review and expert interviews, this study presents a conceptual framework outlining gamipulation's features. It examines ethical concerns like gradually introducing desired behaviors, using distraction to divert attention from significant learning objectives, immediacy of rewards fostering short-term engagement over long-term learning, infantilization of students, and exploitation of emotional responses over reflective thinking. Additionally, it discusses ethical issues in collecting and utilizing student data within gamified environments.  Key findings suggest that while gamification can enhance motivation and engagement, there's a fine line between ethical motivation and unethical manipulation. The study emphasizes the importance of transparency, respect for student autonomy, and alignment with educational values in gamified systems. It calls for educators and designers to be aware of gamification's manipulative potential and strive for ethical implementation that benefits students. In conclusion, this paper provides a framework for educators and researchers to understand and address gamipulation's ethical challenges. It encourages developing ethical guidelines and practices to ensure gamification in education remains a tool for positive engagement and learning rather than covert manipulation.

Keywords: gradualness, distraction, immediacy, infantilization, emotion

Procedia PDF Downloads 39
4386 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 102
4385 A Study on Classic Literature Education in Primary School Using Out-of-School Literature Appreciation Program: An Practice Study Applied to Primary School in Korea

Authors: Hyo Jung Lee

Abstract:

The purpose of this study is to develop a literature appreciation education program for classic literatures and apply them to the field, and to derive the achievements and improvement points. Classic literature is a work of value recognized in the context of literature history and culture history, and learners can develop interest in literature and inherit tradition through appreciation of classic literature. However, in Korean educational environment, classic literature is a means for college entrance examination, and many learners analyze contents and language in textbooks and concentrate on memorizing the whole plot. This study is one of the reasons that classic literature appreciation education is not done properly and it is not able to give an opportunity to appreciate the whole work in the early learning stage. In Korean primary education, classic literature is used as a means to achieve the goals of reading, writing, speaking and listening, rather than being used as a material for its own appreciation. It is problematic to make the piece appreciation experience fragmentary. This study proposes a program to experience classic literatures by linking school education and school library with primary school students in grades 4-6. We work with local primary schools (siheung-si, gyeonggi-do, Korea) to provide appropriate activities and rewards to learners, observe their participation, and introduce student learning outcomes. Through this, we are able to systematically improve the learner 's ability to appreciate the literature and to diversify primary education.

Keywords: classic literature education, primary education, out-of-school program, learning by appreciation experience

Procedia PDF Downloads 151
4384 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 303
4383 Implications of Internationalization for Management and Practice in Higher Education

Authors: Naziema Begum Jappie

Abstract:

The internationalization of higher education has become a focal point for academic institutions worldwide, including those in South Africa. This paper explores the multifaceted implications of internationalization on management and practice within the South African higher education landscape. Universities all over the world are increasingly recognizing the challenges of globalization and the pressures towards internationalization. Internationalization in higher education encompasses a range of activities, including academic exchange programs, research collaborations, joint degree programs, and the recruitment of international students and faculty. In South Africa, this process is driven by various factors, including the quest for global competitiveness, the pursuit of academic excellence, and the promotion of cultural diversity. However, while internationalization presents numerous opportunities, it also brings forth significant challenges that require careful consideration by management and practitioners in higher education institutions. Furthermore, the internationalization of higher education in South Africa has significant implications for teaching and learning practices. With an increasingly diverse student body, educators must employ innovative pedagogical approaches that cater to the needs and preferences of a multicultural cohort. This may involve the integration of global perspectives into the curriculum, the use of technology-enhanced learning platforms, and the promotion of intercultural competence among students and faculty. Additionally, the exchange of knowledge and ideas with international partners can enrich research activities and contribute to the advancement of knowledge in various fields. The internationalization of higher education in South Africa has profound implications for management and practice within academic institutions. While it offers opportunities for enhancing academic quality, promoting cultural exchange, and advancing research agendas, it also presents challenges that require strategic planning, resource allocation, and stakeholder engagement. By addressing these challenges proactively and leveraging the opportunities presented by internationalization, South African universities can position themselves as global leaders in higher education while contributing to the socio-economic development of the country and the continent at large. This paper draws together the international experience in South Africa to explore the emerging patterns of strategy and practice in internationalizing Higher Education and will highlight some critical notions of how the concepts of internationalization and globalization in the context of higher education are understood by those who lead universities and what new challenges are being created as universities seek to become more international. Institutions cannot simply have bullet points in the strategic plan for the recruitment of international students; there has to be a complete commitment to a national strategy of inclusivity. This paper will further examine the leadership styles that ensure transformation together with the goals set out for internationalization. Discussions around adding the international relations dimension to the curriculum. Addressing the issues relevant to cross-border delivery of higher education.

Keywords: challenges, higher education, internationalization, strategic focus

Procedia PDF Downloads 59
4382 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 615
4381 The User Experience Evaluation Study on Gamified Classroom via Prezi

Authors: Wong Seng Yue

Abstract:

Game dynamics and game mechanics are the two main components that used in gamification to engage and encourage students to learn. The advantages of gamified classroom are engaging students, increasing students interest, preserving students focus and remain a positive behaviour. However, the empirical studies on gamification are still at early stage, especially the effectiveness of various gamification components have not been evaluated. Thus, this study is aimed to conduct a user experience (UX) evaluation on gamified classroom through Prezi, which focused on learning experience, gaming experience, adaptivity, and gameplay experience. This study is a further study extended from the previous exploratory study to explore more on UX of gamified classroom via Prezi by interview. A focus group study, which involves 22 students from a foundation course has been conducted for the study. Besides the empirical data from the previous study, this focus group study has significantly found that 90.9% respondents show their positive perceptions on gaming experience via Prezi. They are interested, feel fresh, good, and highly motivated of the contents of Prezi. 95.5% participants have had a positive learning experience from the gamified classroom via Prezi, which can engage them, made them concentrate on learning and easy to remember what they have learned if compared to the traditional classroom slides. The adaptivity of the gamified classroom also high due to its zooming user interface, narrative, rewards and engagement features. This study has uncovered on how far the impact of gamification components in the classroom, especially UX that implemented in gamified classroom.

Keywords: user experience (UX), gamification, gamified classroom, Prezi

Procedia PDF Downloads 214