Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17929

Search results for: human concept learning

13909 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 100
13908 The Use of Neuter in Oedipus Lines to Refer to Antigone in Phoenissae of Seneca

Authors: Cíntia Martins Sanches

Abstract:

In the first part of Phoenissae of Seneca, Antigone is a guide to Oedipus, and they leave Thebes: he is blind searching for death (inflicting the punishment himself wished on the killer of Laius, ie exile and death); she is trying to convince him to give up such punishment and bring him back to Thebes. Concerning Oedipus lines, we observed a high frequency of Latin neuter in the treatment the protagonist gave to his daughter Antigone. We considered in this study that such frequency may be related to the sanctification of the daughter, who is seen by him as an enlightened being and without defects, free of the human condition (which takes on the existence of failures by essence). This study, thus, puts forward an analysis of the passages the said feature is present, relating them to the effect of meaning found in each occurrence. As part of a doctorate, this study investigates the stylistic idiom of Seneca in the Oedipus and Phoenissae tragedies, aiming at translating both tragedies expressively. The concept of stylistic idiom concerns the stylistic affinity required for a translation to be equivalent to the source text. In this wise, this study inquires into how the Latin text is organized poetically, pointing out the expressive features frequently appearing in both dramas. The method we used is based on the Semiotics theory — observing how connotation, ie a language use in which prevails the poetic function, naturally polysemous, acts to achieve each expressive effect.

Keywords: antigone, neuter, Oedipus, Phoenissae, Seneca

Procedia PDF Downloads 291
13907 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 112
13906 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness

Authors: James Kinsella

Abstract:

There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.

Keywords: behavioral finance, emotional finance, economy-biology, social mood

Procedia PDF Downloads 130
13905 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 72
13904 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 82
13903 A Bibliometric Assessment of the Nexus Between Corporate Social Responsibility and Sustainable Development

Authors: Trilochana Dash, Chandan Kumar Sahoo

Abstract:

In today's environment of intensive industrialization, the role of business in societal modernization is critical. The concept of corporate social responsibility (CSR) arose due to rising societal awareness of company conduct. Corporations that practice CSR devote a portion of their profits to society’s sustainable development (SD). The concept of CSR and SD has increased the impact of industries on society. In this study, bibliometric analysis was conducted using the “R” programming language to determine the comprehensiveness of CSR and SD. From 2003 to 2022, bibliometric data was collected from two databases: Scopus and Web of Science (WOS). According to the findings, CSR and SD research has risen exponentially in the past two decades, and “Corporate Social Responsibility and Environment Management” emerged as the most influential journal in this field. The findings also show that relatively very few researchers collaborate in CSR and SD research in the last twenty years. It is widely acknowledged that most CSR and SD research is conducted in developed countries and developing countries undergoing fast industrialization. Thematic evolution and cluster analysis clearly show that the notion of CSR and SD among scholars has been quite popular over the last two decades. Finally, limitations and future directions are discussed.

Keywords: corporate social responsibility, sustainable development, bibliometric analysis, “R” programming language, visualization, holistic picture

Procedia PDF Downloads 88
13902 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain

Authors: Nune Ayvazyan

Abstract:

Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.

Keywords: foreign language, learning, mother tongue, translation

Procedia PDF Downloads 163
13901 Human Resource Management Practices, Person-Environment Fit and Financial Performance in Brazilian Publicly Traded Companies

Authors: Bruno Henrique Rocha Fernandes, Amir Rezaee, Jucelia Appio

Abstract:

The relation between Human Resource Management (HRM) practices and organizational performance remains the subject of substantial literature. Though many studies demonstrated positive relationship, still major influencing variables are not yet clear. This study considers the Person-Environment Fit (PE Fit) and its components, Person-Supervisor (PS), Person-Group (PG), Person-Organization (PO) and Person-Job (PJ) Fit, as possible explanatory variables. We analyzed PE Fit as a moderator between HRM practices and financial performance in the “best companies to work” in Brazil. Data from HRM practices were classified through the High Performance Working Systems (HPWS) construct and data on PE-Fit were obtained through surveys among employees. Financial data, consisting of return on invested capital (ROIC) and price earnings ratio (PER) were collected for publicly traded best companies to work. Findings show that PO Fit and PJ Fit play a significant moderator role for PER but not for ROIC.

Keywords: financial performance, human resource management, high performance working systems, person-environment fit

Procedia PDF Downloads 168
13900 Evaluation of a Higher Diploma in Mental Health Nursing Using Qualitative and Quantitative Methods: Effects on Student Behavior, Attitude and Perception

Authors: T. Frawley, G. O'Kelly

Abstract:

The UCD School of Nursing, Midwifery and Health Systems Higher Diploma in Mental Health (HDMH) nursing programme commenced in January 2017. Forty students successfully completed the programme. Programme evaluation was conducted from the outset. Research ethics approval was granted by the UCD Human Research Ethics Committee – Sciences in November 2016 (LS-E-16-163). Plan for Sustainability: Each iteration of the programme continues to be evaluated and adjusted accordingly. Aims: The ultimate purpose of the HDMH programme is to prepare registered nurses (registered children’s nurse (RCN), registered nurse in intellectual disability (RNID) and registered general nurse (RGN)) to function as effective registered psychiatric nurses in all settings which provide care and treatment for people experiencing mental health difficulties. Curriculum evaluation is essential to ensure that the programme achieves its purpose, that aims and expected outcomes are met and that required changes are highlighted for the programme’s continuing positive development. Methods: Both quantitative and qualitative methods were used in the evaluation. A series of questionnaires were used (the majority pre and post programme) to determine student perceptions of the programme, behaviour and attitudinal change from commencement to completion. These included the student assessment of learning gains (SALG); mental health knowledge schedule (MAKS); mental health clinician attitudes scale (MICA); reported and intended behaviour scale (RIBS); and community attitudes towards the mentally ill (CAMI). In addition, student and staff focus groups were conducted. Evaluation methods also incorporated module feedback. Outcome/Results: The evaluation highlighted a very positive response in relation to the achievement of programme outcomes and preparation for future work as registered psychiatric nursing. Some areas were highlighted for further development, which have been taken cognisance of in the 2019 iteration of the programme.

Keywords: learning gains, mental health, nursing, stigma

Procedia PDF Downloads 142
13899 Mentha crispa Essential Oil and Rotundifolone Analogues: Cytotoxic Effect on Glioblastoma

Authors: Damião Sousa, Hasan Turkez, Ozlem Tozlu, Tamires Lima

Abstract:

Glioblastoma (GBM) is an aggressive cancer from the brain and with high prevalence and significant morbimortality. Therefore, it is necessary to investigate new therapeutic options against this pathology. Thus, the purpose of this study was to evaluate the antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT) and a series of six analogues on human U87MG glioblastoma cell line. The antitumor effects of the compounds on human U87MG-GBM cell line were assessed using in vitro cell viability assays. In addition, biosafety tests were performed on cultured human blood cells. The data show that MCEO, 1,2-perillaldehyde epoxide (EPER1) and perillaldehyde (PALD) were the most cytotoxic compounds against the U87MG cells, with IC50 values of 16.263, 15.087 and 14.888 μg/mL, respectively. The treatment with MCEO, EPER1 and PALD did not lead to damage in blood cells. These chemical analogues may be useful as prototypes for development of novel antitumor drugs due to their promising activities and toxicological safety.

Keywords: antitumor activity, cancer, natural products, terpenes

Procedia PDF Downloads 153
13898 The Powerful of Training; Development and Compensation; Rewards in Sustaining SME’s Performance

Authors: Mohd Fitri Mansor, Noor Hidayah Abu, Hussen Nasir

Abstract:

Human capital is one of valuable assets to the organization in order to sustain organization performance and to achieve both employees and employer objectives. The aim of the study is to examine the powerful of both Human Resource practices (i.e. Training & Development and Compensation & Rewards) towards sustaining SME’s performance. The objectives of the current study are to examine the relationship between training and development as well as compensation and rewards in sustaining Malaysian SME’s performance. Finally, is to identify the strongest variable contribute to the sustainability of SMEs performance. The result from 80 Malaysian SME’s owners found that both variables training & development and compensation & rewards significantly contributes to the sustainability of SME,s performance. Meanwhile, the strongest variable contributes to the sustainability of SMEs performance was training and development. The study contributes to the knowledge and awareness to the SME’s owners an important or the powerful of human resource practices in sustaining their organization performance.

Keywords: training and development, compensation and rewards, sustainability, SME’s performance

Procedia PDF Downloads 485
13897 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 139
13896 The Words of the Pandemic in Spillover by David Quammen

Authors: Anna Maria Re

Abstract:

Taking advantage of the ecolinguistic theoretical and practical analysis, the work intends the prophetic, punctual, and at times disturbing language used by David Quammen in Spillover, questioning it from an ecological perspective and contributing to the search for new stories. In the famous volume, the author illustrates a literary history of the great epidemics and pandemics, demonstrating that viruses are nature's inevitable response to man's assault on ecosystems. In doing so, he introduces new words, which have tamed our anxieties in recent years since writing as a human artistic expression can mirror the human conscience. Writing in the Anthropocene, coining a new reference lexicon with respect to what is happening, means offering a form to the idea of survival of the planet, imagining the human being grappling with an environment whose conformation he himself has helped to change with a language that is no longer effective in describing the world as we have known it and that quickly needs a radical overhaul. Following the methodology proposed in Ecolinguistics: language, ecology and the stories we live by, the analysis in the paper will enhance the language that encodes new stories based on: ideologies, framings, metaphors, evaluations, identities, convictions, and salience.

Keywords: Anthropocene, pandemic, spillover, virus, zoonosis

Procedia PDF Downloads 103
13895 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 167
13894 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 89
13893 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 131
13892 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 164
13891 Resilient Regions for Purpose of Crisis Management

Authors: Jana Gebhartova, Tomas Duda, Ivan Benes

Abstract:

World is characterized by constantly emerging new links, increasing complexity and speed of processes in the society. The globalized world needs (except political and financial mechanisms and institutions) functional supply chains. Transport and supply chains can be interrupted in case of natural disasters, conflicts and civil disorders, sudden demand shocks, export/import restrictions, terrorism. Long-term interruption of crucial services for human existence can results in breakdown of the whole society. If global supply chains can be interrupted, the ability to survive a crisis situation depends on local self-sufficiency, it means ensuring water, food and energy. In the world of 21st century, new way of thinking (based on the concept of resilience) is needed. Planning for self-sufficiency and resilience must be part of the agenda of local governments. The paper presents first results of research project VF20112015518 “Security of population – crisis management” that deals with issue of critical infrastructure, ensuring regional self-sufficiency in crisis situations and issues related to population protection and water, energy and food security. The project is being solved within Security Research of Ministry of the Interior of the Czech Republic in 2011-2015.

Keywords: crisis management, resilience, indicators of self-sufficiency, continuity of supplies

Procedia PDF Downloads 381
13890 The Quantity and Quality of Teacher Talking Time in EFL Classroom

Authors: Hanan Abufares Elkhimry

Abstract:

Looking for more effective teaching and learning approaches, teaching instructors have been telling trainee teachers to decrease their talking time, but the problem is how best to do this. Doing classroom research, specifically in the area of teacher talking time (TTT), is worthwhile, as it could improve the quality of teaching languages, as the learners are the ones who should be practicing and using the language. This work hopes to ascertain if teachers consider this need in a way that provides the students with the opportunities to increase their production of language. This is a question that is worthwhile answering. As many researchers have found, TTT should be decreased to 30% of classroom talking time and STT should be increased up to 70%. Other researchers agree with this, but add that it should be with awareness of the quality of teacher talking time. Therefore, this study intends to investigate the balance between quantity and quality of teacher talking time in the EFL classroom. For this piece of research and in order to capture the amount of talking in a four classrooms. The amount of talking time was measured. A Checklist was used to assess the quality of the talking time In conclusion, In order to improve the quality of TTT, the results showed that teachers may use more or less than 30% of the classroom talking time and still produce a successful classroom learning experience. As well as, the important factors that can affect TTT is the English level of the students. This was clear in the classroom observations, where the highest TTT recorded was with the lowest English level group.

Keywords: teacher talking time TTT, learning experience, classroom research, effective teaching

Procedia PDF Downloads 421
13889 Direct and Indirect Impacts of Predator Conflict in Kanha National Park, India

Authors: Diane H. Dotson, Shari L. Rodriguez

Abstract:

Habitat for predators is on the decline worldwide, which often brings humans and predators into conflict over remaining shared space and common resources. While the direct impacts of human predator conflict on humans (i.e., attacks on livestock or humans resulting in injury or death) are well documented, the indirect impacts of conflict on humans (i.e., downstream effects such as fear, stress, opportunity costs, PTSD) have not been addressed. We interviewed 437 people living in 54 villages on the periphery of Kanha National Park, India, to assess the amount and severity of direct and indirect impacts of predator conflict. ​While 58% of livestock owners believed that predator attacks on livestock guards occurred frequently and 62% of those who collect forest products believed that predator attacks on those collecting occurred frequently, less than 20% of all participants knew of someone who had experienced an attack. Data related to indirect impacts suggest that such impacts are common; 76% of participants indicated they were afraid a predator will physically injure them. Livestock owners reported that livestock guarding took time away from their primary job (61%) and getting enough sleep (73%), and believed that it increased their vulnerability to illnesses (80%). These results suggest that the perceptions of risk of predator attack are likely inflated, yet the costs of human predator impacts may be substantially higher than previously estimated, particularly related to human well-being, making the implementation of appropriate and effective conservation and conflict mitigation strategies and policies increasingly urgent.

Keywords: direct impacts, indirect impacts, human-predator conflict, India

Procedia PDF Downloads 158
13888 Drivers and Barriers to the Acceptability of a Human Milk Bank Among Malaysians: A Cross Sectional Study

Authors: Kalaashini Ramachandran, Maznah Dahlui, Nik Daliana Nik Farid

Abstract:

WHO recommends all babies to be exclusively breastfed and donor milk is the next best alternative in the absence of mother’s own milk. The establishment of a human milk bank (HMB) is still being debated due to religious concerns in Malaysia leading to informal milk sharing practices, but little is known on the knowledge, attitude and perception of women towards HMB and its benefits. This study hypothesizes that there is no association between knowledge and attitude and the acceptance towards the establishment of human milk bank among Malaysian women and healthcare providers. The aim of this study is to determine the drivers and barriers among Malaysian towards the acceptance of an HMB. A cross-sectional study with 367 participants was enrolled within a period of 3 months to answer an online self-administered questionnaire. Data on sociodemographic, knowledge on breastfeeding benefits, knowledge and attitude on HMB and its specific issues were analyzed in terms of frequency and then proceed to multiple logistic regression. Majority of the respondents are of Islamis religion (73.3%), have succeesfully completed their tertiary education (82.8%), and are employed (70.8%). Only 55.9% of respondents have heard of an HMB stating internet as their main source of information but a higher prevalence is agreeable to the establishment of a human milk bank (67.8%). Most respondents have a good score on knowledge of breastfeeding benefits and on HMB specific issues (70% and 54.2% respectively) while 63.8% of them have a positive attitude towards HMB. In the multivariate analysis, mothers with a good score on general knowledge of breastfeeding (AOR: 1.715) were more likely to accept the establishment of an HMB while Islamic religion was negatively associated with its establishment (AOR:0.113). This study has found a high prevalence rate of mothers who are willing to accept the establishment of an HMB. This action can be potentially shaped by educating mothers on the benefits of breastfeeding as well as addressing their religious concerns so the establishment of a religiously abiding HMB in Malaysia may be accepted without compromising their belief or the health benefit of donor milk.

Keywords: acceptability, attitude, human milk bank, knowledge

Procedia PDF Downloads 107
13887 Instructional Design Strategy Based on Stories with Interactive Resources for Learning English in Preschool

Authors: Vicario Marina, Ruiz Elena, Peredo Ruben, Bustos Eduardo

Abstract:

the development group of Educational Computing of the National Polytechnic (IPN) in Mexico has been developing interactive resources at preschool level in an effort to improve learning in the Child Development Centers (CENDI). This work describes both a didactic architecture and a strategy for teaching English with digital stories using interactive resources available through a Web repository designed to be used in mobile platforms. It will be accessible initially to 500 children and worldwide by the end of 2015.

Keywords: instructional design, interactive resources, digital educational resources, story based English teaching, preschool education

Procedia PDF Downloads 477
13886 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance

Authors: Clement Yeboah, Eva Laryea

Abstract:

A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.

Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety

Procedia PDF Downloads 82
13885 Method of Nursing Education: History Review

Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán

Abstract:

Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.

Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education

Procedia PDF Downloads 120
13884 Digitalize or Die-Responsible Innovations in Healthcare and Welfare Sectors

Authors: T. Iakovleva

Abstract:

Present paper suggests a theoretical model that describes the process of the development of responsible innovations on the firm level in health and welfare sectors. There is a need to develop new firm strategies in these sectors. This paper suggests to look on the concept of responsible innovation that was originally developed on the social level and to apply this new concept to the new area of firm strategy. The rapid global diffusion of information and communication technologies has greatly improved access to knowledge. At the same time, communication is cheap, information is a commodity, and global trade increases technological diffusion. As a result, firms and users, including those outside of industrialized nations, get early exposure to the latest technologies and information. General-purpose technologies such as mobile phones and 3D printers enable individuals to solve local needs and customize products. The combined effect of these changes is having a profound impact on the innovation landscape. Meanwhile, the healthcare sector is facing unprecedented challenges, which are magnified by budgetary constraints, an aging population and the desire to provide care for all. On the other hand, patients themselves are changing. They are savvier about their diseases, they expect their relation with the healthcare professionals to be open and interactive, but above all they want to be part of the decision process. All of this is a reflection of what is already happening in other industries where customers have access to large amount of information and became educated buyers. This article addresses the question of how ICT research and innovation may contribute to developing solutions to grand societal challenges in a responsible way. A broad definition of the concept of responsibility in the context of innovation is adopted in this paper. Responsibility is thus seen as a collective, uncertain and future-oriented activity. This opens the questions of how responsibilities are perceived and distributed and how innovation and science can be governed and stewarded towards socially desirable and acceptable ends. This article addresses a central question confronting politicians, business leaders, and regional planners.

Keywords: responsible innovation, ICT, healthcare, welfare sector

Procedia PDF Downloads 201
13883 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching

Authors: Mohammed Shaath

Abstract:

Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.

Keywords: TEL, orthodontic, teaching, traditional

Procedia PDF Downloads 47
13882 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 408
13881 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development

Authors: Dyah Titisari Widyastuti

Abstract:

Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.

Keywords: accessibility of daily mobility, pedestrian-friendly district, rail-station district, transit oriented development

Procedia PDF Downloads 238
13880 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 160