Search results for: evolving learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7704

Search results for: evolving learning

3684 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 142
3683 Error Analysis: Examining Written Errors of English as a Second Language (ESL) Spanish Speaking Learners

Authors: Maria Torres

Abstract:

After the acknowledgment of contrastive analysis, Pit Coder’s establishment of error analysis revolutionized the way instructors analyze and examine students’ writing errors. One question that relates to error analysis with speakers of a first language, in this case, Spanish, who are learning a second language (English), is the type of errors that these learners make along with the causes of these errors. Many studies have looked at the way the native tongue influences second language acquisition, but this method does not take into account other possible sources of students’ errors. This paper examines writing samples from an advanced ESL class whose first language is Spanish at non-profit organization, Learning Quest Stanislaus Literacy Center. Through error analysis, errors in the students’ writing were identified, described, and classified. The purpose of this paper was to discover the type and origin of their errors which generated appropriate treatments. The results in this paper show that the most frequent errors in the advanced ESL students’ writing pertain to interlanguage and a small percentage from an intralanguage source. Lastly, the least type of errors were ones that originate from negative transfer. The results further solidify the idea that there are other errors and sources of errors to account for rather than solely focusing on the difference between the students’ mother and target language. This presentation will bring to light some strategies and techniques that address the issues found in this research. Taking into account the amount of error pertaining to interlanguage, an ESL teacher should provide metalinguistic awareness of the students’ errors.

Keywords: error analysis, ESL, interlanguage, intralangauge

Procedia PDF Downloads 298
3682 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)

Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen

Abstract:

Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.

Keywords: gamification, management competence, organizational learning, systems thinking

Procedia PDF Downloads 96
3681 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria

Authors: A. Yakub AbdurRaheem

Abstract:

Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the northeastern parts have ignited violence, bloodshed, refugee exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, but it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of this social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for the prompt response, encourage community and neighborhood policing to ameliorate security challenges in Nigeria.

Keywords: social crisis, economy, resources, property market

Procedia PDF Downloads 237
3680 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 190
3679 A Proposal for Professional Development of Mathematics Teachers in the Kingdom of Saudi Arabia According to the Orientation of Science, Technology, Engineering and Mathematics (STEM)

Authors: Ali Taher Othman Ali

Abstract:

The aim of this research is to provide a draft proposal for the professional development of mathematics teachers in accordance with the orientation of science, technology, engineering and mathematics which is known by the abbreviation STEM, as a modern and contemporary orientation in the teaching and learning of mathematics and in order to achieve the objective of the research, the researcher used the theoretical descriptive method through the induction of the literature of education and the previous studies and experiments related to the topic. The researcher concluded by providing the proposal according to five basic axes, the first axe: professional development as a system, and its requirements include: development of educational systems, and allocate sufficient budgets to support the requirements of teaching STEM, identifying mechanisms for incentives and rewards for teachers attending professional development programs based on STEM; the second: development of in-depth knowledge content and its requirements include: basic sciences content development for STEM, linking the scientific understanding of teachers with real-world issues and problems, to provide the necessary resources to expand teachers' knowledge in this area; the third: the necessary pedagogical skills of teachers in the field of STEM, and its requirements include: identification of the required training and development needs and the mechanism of determining these needs, the types of professional development programs and the mechanism of designing it, the mechanisms and places of execution, evaluation and follow-up; the fourth: professional development strategies and mechanisms in the field of STEM, and its requirements include: using a variety of strategies to enable teachers to design and transfer effective educational experiences which reflect their scientific mastery in the fields of STEM, provide learning opportunities, and developing the skills of procedural research to generate new knowledge about the STEM; the fifth: to support professional development in the area of STEM, and its requirements include: support leadership within the school, provide a clear and appropriate opportunities for professional development for teachers within the school through professional learning communities, building partnerships between the Ministry of education and the local and international community institutions. The proposal includes other factors that should be considered when implementing professional development programs for mathematics teachers in the field of STEM.

Keywords: professional development, mathematics teachers, the orientation of science, technology, engineering and mathematics (STEM)

Procedia PDF Downloads 408
3678 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
3677 Innovative Tool for Improving Teaching and Learning

Authors: Izharul Haq

Abstract:

Every one of us seek to aspire to gain quality education. The biggest stake holders are students who labor through years acquiring knowledge and skill to help them prepare for their career. Parents spend a fortune on their children’s education. Companies spend billions of dollars to enhance standards by developing new education products and services. Quality education is the golden key to a long lasting prosperity for the individual and the nation. But unfortunately, education standards are continuously deteriorating and it has become a global phenomenon. Unfortunately, teaching is often described as a ‘popularity contest’ and those teachers who are usually popular with students are often those who compromise teaching to appease students. Such teachers also ‘teach-to-the-test’ ensuring high test scores. Such teachers, hence, receive good student rating. Teachers who are conscientious, rigorous and thorough are often the victims of good appraisal. Government and private organizations are spending billions of dollars trying to capture the characteristics of a good teacher. But the results are still vague and inconclusive. At present there is no objective way to measure teaching effectiveness. In this paper we present an innovative method to objectively measure teaching effectiveness using a new teaching tool (TSquare). The TSquare tool used in the study is practical, easy to use, cost effective and requires no special equipment to implement. Hence it has a global appeal for poor and the rich countries alike.

Keywords: measuring teaching effectiveness, quality in education, student learning, teaching styles

Procedia PDF Downloads 296
3676 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 326
3675 Review on Future Economic Potential Stems from Global Electronic Waste Generation and Sustainable Recycling Practices.

Authors: Shamim Ahsan

Abstract:

Abstract Global digital advances associated with consumer’s strong inclination for the state of art digital technologies is causing overwhelming social and environmental challenges for global community. During recent years not only economic advances of electronic industries has taken place at steadfast rate, also the generation of e-waste outshined the growth of any other types of wastes. The estimated global e-waste volume is expected to reach 65.4 million tons annually by 2017. Formal recycling practices in developed countries are stemming economic liability, opening paths for illegal trafficking to developing countries. Informal crude management of large volume of e-waste is transforming into an emergent environmental and health challenge in. Contrariwise, in several studies formal and informal recycling of e-waste has also exhibited potentials for economic returns both in developed and developing countries. Some research on China illustrated that from large volume of e-wastes generation there are recycling potential in evolving from ∼16 (10−22) billion US$ in 2010, to an anticipated ∼73.4 (44.5−103.4) billion US$ by 2030. While in another study, researcher found from an economic analysis of 14 common categories of waste electric and electronic equipment (WEEE) the overall worth is calculated as €2.15 billion to European markets, with a potential rise to €3.67 billion as volumes increase. These economic returns and environmental protection approaches are feasible only when sustainable policy options are embraced with stricter regulatory mechanism. This study will critically review current researches to stipulate how global e-waste generation and sustainable e-waste recycling practices demonstrate future economic development potential in terms of both quantity and processing capacity, also triggering complex some environmental challenges.

Keywords: E-Waste, , Generation, , Economic Potential, Recycling

Procedia PDF Downloads 305
3674 Teaching Reading in English: The Neglect of Phonics in Nigeria

Authors: Abdulkabir Abdullahi

Abstract:

Nigeria has not yet welcomed phonics into its primary schools. In government-owned primary schools teachers are functionally ignorant of the stories of the reading wars amongst international scholars. There are few or no Nigerian-authored phonics textbooks, and there has been no government-owned phonics curriculum either. There are few or no academic journal articles on phonics in the country and there is, in fact, a certain danger of confusion between phonics and phonetics among Nigerian publishers, authors, writers and academics as if Nigerian teachers of English and the educational policy makers of the country were unaware of reading failures/problems amongst Nigerian children, or had never heard of phonics or read of the stories of the reading wars or the annual phonics test in the United Kingdom, the United States of America and other parts of the world. It is on this note that this article reviews and examines, in the style of a qualitative inquiry, the body of arguments on phonics, and explores the effectiveness of phonics teaching, particularly, in a second-language learning contexts. While the merit of the paper is, perhaps, situated in its supreme effort to draw global attention to reading failures/problems in Nigeria and the ways the situation may affect English language learning, international academic relations and the educational future of the country, it leaves any quantitative verification of its claims to interested quantitative researchers in the world.

Keywords: graphemes, phonics, reading, reading wars, reading theories, phonemic awareness

Procedia PDF Downloads 233
3673 Pibid and Experimentation: A High School Case Study

Authors: Chahad P. Alexandre

Abstract:

PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.

Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences

Procedia PDF Downloads 341
3672 Lessons Learned from Covid19 - Related ERT in Universities

Authors: Sean Gay, Cristina Tat

Abstract:

This presentation will detail how a university in Western Japan has implemented its English for Academic Purposes (EAP) program during the onset of CoViD-19 in the spring semester of 2020. In the spring semester of 2020, after a 2 week delay, all courses within the School of Policy Studies EAP Program at Kwansei Gakuin University were offered in an online asynchronous format. The rationale for this decision was not to disadvantage students who might not have access to devices necessary for taking part in synchronous online lessons. The course coordinators were tasked with consolidating the materials originally designed for face-to-face14 week courses for a 12 week asynchronous online semester and with uploading the modified course materials to Luna, the university’s network, which is a modified version of Blackboard. Based on research to determine the social and academic impacts of this CoViD-19 ERT approach on the students who took part in this EAP program, this presentation explains how future curriculum design and implementation can be managed in a post-CoViD world. There are a wide variety of lessons that were salient. The role of the classroom as a social institution was very prominent; however, awareness of cognitive burdens and strategies to mitigate that burden may be more valuable for teachers. The lessons learned during this period of ERT can help teachers moving forward.

Keywords: asynchronous online learning, emergency remote teaching (ERT), online curriculum design, synchronous online learning

Procedia PDF Downloads 203
3671 Studying Educational Processes through a Multifocal Viewpoint: Educational and Social Studies

Authors: Noa Shriki, Atara Shriki

Abstract:

Lifelong learning is considered as essential for teacher's professional development, which in turn has implications for the improvement of the entire education system. In recent years, many programs designed to support teachers' professional development are criticized for not achieving their goal. A variety of reasons have been proposed for the purpose of explaining the causes of the ineffectiveness of such programs. In this study, we put to test the possibility that teachers do not change as a result of their participation in professional programs due to a gap between the contents and approaches included in them and teacher's beliefs about teaching and learning. Eighteen elementary school mathematics teachers participated in the study. These teachers were involved in collaborating with their students in inquiring mathematical ideas, while implementing action research. Employing educational theories, the results indicated that this experience had a positive effect on teacher's professional development. In particular, there was an evident change in their beliefs regarding their role as mathematics teachers. However, while employing a different perspective for analyzing the data, the lens of Kurt Lewin's theory of re-education, we realized that this change of beliefs must be questioned. Therefore, it is suggested that analysis of educational processes should be carried out not only through common educational theories, but also on the basis of social and organizational theories. It is assumed that both the field of education and the fields of social studies and organizational consulting will benefit from the multifocal viewpoint

Keywords: educational theories, professional development, re-education, teachers' beliefs

Procedia PDF Downloads 141
3670 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 104
3669 Software Development to Empowering Digital Libraries with Effortless Digital Cataloging and Access

Authors: Abdul Basit Kiani

Abstract:

The software for the digital library system is a cutting-edge solution designed to revolutionize the way libraries manage and provide access to their vast collections of digital content. This advanced software leverages the power of technology to offer a seamless and user-friendly experience for both library staff and patrons. By implementing this software, libraries can efficiently organize, store, and retrieve digital resources, including e-books, audiobooks, journals, articles, and multimedia content. Its intuitive interface allows library staff to effortlessly manage cataloging, metadata extraction, and content enrichment, ensuring accurate and comprehensive access to digital materials. For patrons, the software offers a personalized and immersive digital library experience. They can easily browse the digital catalog, search for specific items, and explore related content through intelligent recommendation algorithms. The software also facilitates seamless borrowing, lending, and preservation of digital items, enabling users to access their favorite resources anytime, anywhere, on multiple devices. With robust security features, the software ensures the protection of intellectual property rights and enforces access controls to safeguard sensitive content. Integration with external authentication systems and user management tools streamlines the library's administration processes, while advanced analytics provide valuable insights into patron behavior and content usage. Overall, this software for the digital library system empowers libraries to embrace the digital era, offering enhanced access, convenience, and discoverability of their vast collections. It paves the way for a more inclusive and engaging library experience, catering to the evolving needs of tech-savvy patrons.

Keywords: software development, empowering digital libraries, digital cataloging and access, management system

Procedia PDF Downloads 83
3668 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 210
3667 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 41
3666 MEET (Maximise the Erasmus Experience Together): Gains, Challenges and Proposals

Authors: Susana Olmos, Catherine Spencer

Abstract:

Every year our School in DIT (Dublin Institute of Technology) hosts approximately 80 Erasmus students from partner universities across Europe. Our own students are required to spend a compulsory 3rd year abroad on study and/or work placements. This is an extremely rewarding experience for all of the students, however, it can also be a challenging one. With this in mind, we started a project which aimed to make this transition as easy and productive as possible. The project, which is called MEET: Maximise the Erasmus Experience Together, focuses on the students’ own active engagement in learning and preparation – outside of the classroom –and their own self-directed pursuit of opportunities to develop their confidence and preparedness, which would work as an important foundation for the transformative learning that study abroad implies. We focussed on creating more structured opportunities where Erasmus students from our partner universities (currently studying at DIT) and our second-year students could interact and learn from each other, and in so doing improve both their language and intercultural skills. Our experience so far has been quite positive and we have seen how students taking part in this project have developed as autonomous learners as well as enhanced both their linguistic and intercultural knowledge. As the linguistic element of our project was one of our main priorities, we asked the students to keep a reflective diary on the activities that were organised by the group in the TL. Also, we use questionnaires as well as personal interviews to assess their development. However, there are challenges and proposals we would make to bring this project forward for the near future.

Keywords: erasmus, intercultural competence, linguistic competence, extra curriculum activities

Procedia PDF Downloads 378
3665 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
3664 Improving Climate Awareness and the Knowledge Related to Climate Change's Health Impacts on Medical Schools

Authors: Abram Zoltan

Abstract:

Over the past hundred years, human activities, particularly the burning of fossil fuels, have released enough carbon dioxide and other greenhouse gases to dissipate additional heat into the lower atmosphere and affect the global climate. Climate change affects many social and environmental determinants of health: clean air, safe drinking water, and adequate food. Our aim is to draw attention to the effects of climate change on the health and health care system. Improving climate awareness and the knowledge related to climate change's health impacts are essential among medical students and practicing medical doctors. Therefore, in their everyday practice, they also need some assistance and up-to-date knowledge of how climate change can endanger human health and deal with these novel health problems. Our activity, based on the cooperation of more universities, aims to develop new curriculum outlines and learning materials on climate change's health impacts for medical schools. Special attention is intended to pay to the possible preventative measures against these impacts. For all of this, the project plans to create new curriculum outlines and learning materials for medical students, elaborate methodological guidelines and create training materials for medical doctors' postgraduate learning programs. The target groups of the project are medical students, educational staff of medical schools and universities, practicing medical doctors with special attention to the general practitioners and family doctors. We had searched various surveys, domestic and international studies about the effects of climate change and statistical estimation of the possible consequences. The health effects of climate change can be measured only approximately by considering only a fraction of the potential health effects and assuming continued economic growth and health progress. We can estimate that climate change is expected to cause about 250,000 more deaths. We conclude that climate change is one of the most serious problems of the 21st century, affecting all populations. In the short- to medium-term, the health effects of climate change will be determined mainly by human vulnerability. In the longer term, the effects depend increasingly on the extent to which transformational action is taken now to reduce emissions. We can contribute to reducing environmental pollution by raising awareness and by educating the population.

Keywords: climate change, health impacts, medical students, education

Procedia PDF Downloads 127
3663 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
3662 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 370
3661 Effects of in silico (Virtual Lab) And in vitro (inside the Classroom) Labs in the Academic Performance of Senior High School Students in General Biology

Authors: Mark Archei O. Javier

Abstract:

The Fourth Industrial Revolution (FIR) is a major industrial era characterized by the fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. Since this era teaches us how to thrive in the fast-paced developing world, it is important to be able to adapt. With this, there is a need to make learning and teaching in the bioscience laboratory more challenging and engaging. The goal of the research is to find out if using in silico and in vitro laboratory activities compared to the conventional conduct laboratory activities would have positive impacts on the academic performance of the learners. The potential contribution of the research is that it would improve the teachers’ methods in delivering the content to the students when it comes to topics that need laboratory activities. This study will develop a method by which teachers can provide learning materials to the students. A one-tailed t-Test for independent samples was used to determine the significant difference in the pre- and post-test scores of students. The tests of hypotheses were done at a 0.05 level of significance. Based on the results of the study, the gain scores of the experimental group are greater than the gain scores of the control group. This implies that using in silico and in vitro labs for the experimental group is more effective than the conventional method of doing laboratory activities.

Keywords: academic performance, general biology, in silico laboratory, in vivo laboratory, virtual laboratory

Procedia PDF Downloads 189
3660 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies

Authors: Saiakhil Chilaka

Abstract:

Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.

Keywords: juvenile, justice system, data analysis, SHAP

Procedia PDF Downloads 23
3659 The Participation of Graduates and Students of Social Work in the Erasmus Program: a Case Study in the Portuguese context – the Polytechnic of Leiria

Authors: Cezarina da Conceição Santinho Maurício, José Duque Vicente

Abstract:

Established in 1987, the Erasmus Programme is a program for the exchange of higher education students. Its purposes are several. The mobility developed has contributed to the promotion of multiple learning, the internalization the feeling of belonging to a community, and the consolidation of cooperation between entities or universities. It also allows the experience of a European experience, considering multilingualism one of the bases of the European project and vehicle to achieve the union in diversity. The program has progressed and introduced changes Erasmus+ currently offers a wide range of opportunities for higher education, vocational education and training, school education, adult education, youth, and sport. These opportunities are open to students and other stakeholders, such as teachers. Portugal was one of the countries that readily adhered to this program, assuming itself as an instrument of internationalization of polytechnic and university higher education. Students and social work teachers have been involved in this mobility of learning and multicultural interactions. The presence and activation of this program was made possible by Portugal's joining the European Union. This event was reflected in the field of portuguese social work and contributes to its approach to the reality of european social work. Historically, the Portuguese social work has built a close connection with the Latin American world and, in particular, with Brazil. There are several examples that can be identified in the different historical stages. This is the case of the post-revolution period of 1974 and the presence of the reconceptualization movement, the struggle for enrollment in the higher education circuit, the process of winning a bachelor's degree, and postgraduate training (the first doctorates of social work were carried out in Brazilian universities). This influence is also found in the scope of the authors and the theoretical references used. This study examines the participation of graduates and students of social work in the Erasmus program. The following specific goals were outlined: to identify the host countries and universities; to investigate the dimension and type of mobility made, understand the learning and experiences acquired, identify the difficulties felt, capture their perspectives on social work and the contribution of this experience in training. In the methodological field, the option fell on a qualitative methodology, with the application of semi-structured interviews to graduates and students of social work with Erasmus mobility experience. Once the graduates agreed, the interviews were recorded and transcribed, analyzed according to the previously defined analysis categories. The findings emphasize the importance of this experience for students and graduates in informal and formal learning. The authors conclude with recommendations to reinforce this mobility, either at the individual level or as a project built for the group or collective.

Keywords: erasmus programme, graduates and students of social work, participation, social work

Procedia PDF Downloads 149
3658 Expanding Business Strategy to Native American Communities Using Experiential Learning

Authors: A. J. Otjen

Abstract:

Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.

Keywords: entrepreneurship, native American economies, small businesses, unemployment

Procedia PDF Downloads 476
3657 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF

Authors: Ashok K. Gupta

Abstract:

Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.

Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements

Procedia PDF Downloads 67
3656 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice

Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant

Abstract:

Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.

Keywords: clinical simulation, education, pharmacology, simulation, virtual learning

Procedia PDF Downloads 338
3655 Hybrid Learning and Testing at times of Corona: A Case Study at an English Department

Authors: Mimoun Melliti

Abstract:

In the wake of the global pandemic, educational systems worldwide faced unprecedented challenges and had to swiftly adapt to new conditions. This necessitated a fundamental shift in assessment processes, as traditional in-person exams became impractical. The present paper aims to investigate how educational systems have adapted to the new conditions imposed by the outbreak of the pandemic. This paper serves as a case study documenting the various decisions, conditions, experiments, and outcomes associated with transitioning the assessment processes of a higher education institution to a fully online format. The participants of this study consisted of 4666 students from health, engineering, science, and humanities disciplines, who were enrolled in general English (Eng101/104) and English for specific purposes (Eng102/113) courses at a preparatory year institution in Saudi Arabia. The findings of this study indicate that online assessment can be effectively implemented given the fulfillment of specific requirements. These prerequisites encompass the presence of competent staff, administrative flexibility, and the availability of necessary infrastructure and technological support. The significance of this case study lies in its comprehensive description of the various steps and measures undertaken to adapt to the "new normal" situation. Furthermore, it evaluates the impact of these measures and offers detailed recommendations for potential similar future scenarios.

Keywords: hybrid learning, testing, adaptive teaching, EFL

Procedia PDF Downloads 61