Search results for: fast Fourier algorithms
662 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 180661 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 523660 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles
Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi
Abstract:
Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures
Procedia PDF Downloads 256659 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 23658 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 91657 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 91656 Evaluation of Biological and Confinement Properties of a Bone Substitute to in Situ Preparation Based on Demineralized Bone Matrix for Bone Tissue Regeneration
Authors: Aura Maria Lopera Echavarria, Angela Maria Lema Perez, Daniela Medrano David, Pedronel Araque Marin, Marta Elena Londoño Lopez
Abstract:
Bone regeneration is the process by which the formation of new bone is stimulated. Bone fractures can originate at any time due to trauma, infections, tumors, congenital malformations or skeletal diseases. Currently there are different strategies to treat bone defects that in some cases, regeneration does not occur on its own. That is why they are treated with bone substitutes, which provide a necessary environment for the cells to synthesize new bone. The Demineralized Bone Matrix (DBM) is widely used as a bone implant due to its good properties, such as osteoinduction and bioactivity. However, the use of DBM is limited, because its presentation is powder, which is difficult to implant with precision and is susceptible to migrating to other sites through blood flow. That is why the DBM is commonly incorporated into a variety of vehicles or carriers. The objective of this project is to evaluate the bioactive and confinement properties of a bone substitute based on demineralized bone matrix (DBM). Also, structural and morphological properties were evaluated. Bone substitute was obtained from EIA Biomaterials Laboratory of EIA University and the DBM was facilitated by Tissue Bank Foundation. Morphological and structural properties were evaluated by scanning electron microscopy (SEM), X-ray diffraction (DRX) and Fourier transform infrared spectroscopy with total attenuated reflection (FTIR-ATR). Water absorption capacity and degradation were also evaluated during three months. The cytotoxicity was evaluated by the MTT test. The bioactivity of the bone substitute was evaluated through immersion of the samples in simulated body fluid during four weeks. Confinement tests were performed on tibial fragments of a human donor with bone defects of determined size, to ensure that the substitute remains in the defect despite the continuous flow of fluid. According of the knowledge of the authors, the methodology for evaluating samples in a confined environment has not been evaluated before in real human bones. The morphology of the samples showed irregular surface and presented some porosity. DRX confirmed a semi-crystalline structure. The FTIR-ATR determined the organic and inorganic phase of the sample. The degradation and absorption measurements stablished a loss of 3% and 150% in one month respectively. The MTT showed that the system is not cytotoxic. Apatite clusters formed from the first week were visualized by SEM and confirmed by EDS. These calcium phosphates are necessary to stimulate bone regeneration and thanks to the porosity of the developed material, osteinduction and osteoconduction are possible. The results of the in vitro evaluation of the confinement of the material showed that the migration of the bone filling to other sites is negligible, although the samples were subjected to the passage of simulated body fluid. The bone substitute, putty type, showed stability, is bioactive, non-cytotoxic and has handling properties for specialists at the time of implantation. The obtained system allows to maintain the osteoinductive properties of DBM and it can fill completely fractures in any way; however, it does not provide a structural support, that is, it should only be used to treat fractures without requiring a mechanical load.Keywords: bone regeneration, cytotoxicity, demineralized bone matrix, hydrogel
Procedia PDF Downloads 123655 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach
Authors: Nwachukwu Ifeanyi
Abstract:
Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.Keywords: computation, robotics, mathematics, simulation
Procedia PDF Downloads 62654 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 159653 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 207652 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 96651 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 360650 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 170649 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)
Procedia PDF Downloads 132648 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels
Authors: Dovile Petkeviciute-Barysiene
Abstract:
Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).Keywords: automation levels, information processing, legal judgment and decision making, legal technology
Procedia PDF Downloads 145647 An Evaluation and Guidance for mHealth Apps
Authors: Tareq Aljaber
Abstract:
The number of mobile health apps is growing at a fast frequency as it's nearly doubled in a year between 2015 and 2016. Though, there is a lack of an effective evaluation framework to verify the usability and reliability of mobile phone health education applications which would help saving time and effort for the numerous user groups. This abstract describing a framework for evaluating mobile applications in specifically mobile health education applications, along with a guidance select tool to assist different users to select the most suitable mobile health education apps. The effective framework outcome is intended to meet the requirements and needs of the different stakeholder groups additionally to enhancing the development of mobile health education applications with software engineering approaches, by producing new and more effective techniques to evaluate such software. This abstract highlights the significance and consequences of mobile health education apps, before focusing the light on the required to create an effective evaluation framework for these apps. An explanation of the effective evaluation framework is going to be delivered in the abstract, beside with some specific evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) metrics to enable the determination of the usefulness and usability of health education mobile apps. Moreover, an explanation of the qualitative and quantitative outcomes for the effective evaluation framework was accomplished using Epocrates mobile phone app in addition to some other mobile phone apps. This proposed framework-An Evaluation Framework for Mobile Health Education Apps-consists of a hybrid of 5 metrics designated from a larger set in usability evaluation and heuristic evaluation, illuminated grounded on 15 unstructured interviews from software developers (SD), health professionals (HP) and patients (P). These five metrics corresponding to explicit facets of usability recognised through a requirements analysis of typical stakeholders of mobile health apps. These five hybrid selected metrics were scattered across 24 specific questionnaire questions, which are available on request from first author. This questionnaire has been sent to 81 participants distributed in three sets of stakeholders from software developers (SD), health professionals (HP) and patients/general users (P/GU) on the purpose of ranking three sets of mobile health education applications. Finally, the outcomes from the questionnaire data helped us to approach our aims which are finding the profile for different stakeholders, finding the profile for different mobile health educations application packages, ranking different mobile health education application and guide us to build the select guidance too which is apart from the Evaluation Framework for Mobile Health Education Apps.Keywords: evaluation framework, heuristic evaluation, usability evaluation, metrics
Procedia PDF Downloads 405646 Human Rights Legislations and Evolution Effect on Attitudes
Authors: Sherin Kamal Zaki Kallini
Abstract:
The ratification of an global human rights prison instrument affords signatory States with an opportunity to count on a hard and fast of obligations and rights for the gain of their residents, imparting expanded possibilities, possibilities, and manner to access an improved best of existence – to be, to appear, and to become. developed countries commonly experience cultural, political, social, monetary, prison, and regulatory alterations in reaction to this transition. In a methodologically proactive technique, mechanisms undergo a visible and understandable manner of qualitative and quantitative exchange. Conversely, in countries undergoing improvement, the response to such ratification varies. some display high quality coverage modifications, whilst others stay stagnant or regress. Cameroon falls into the second one category, no matter efforts, as it legally prohibits 50% of its populace with disabilities from obtaining the reputation of a person with a incapacity. The overarching goal of this communique is to spotlight those deficiencies and their adverse outcomes on various components of existence, fostering recognition among beneficiaries and advocating for extra inclusive alterations within the united states. Our task employs a popular and participatory methodological approach by related to beneficiaries and their groups in its training. it is also inclusive, representing the diversity of disabilities and tasty natural and criminal folks from numerous backgrounds. active consultations occur at all tiers of the sports. anticipated consequences include raising focus globally among countries, worldwide cooperation businesses, NGOs, and other inclusive improvement actors. We are looking for their support for nearby advocacy efforts to absolutely enforce the United countries convention on the Rights of persons with Disabilities (CRPD). concurrently, we hope they specific harmony with the sufferers in Cameroon who have been left behind and endorse legal reforms to align domestic and global rules with the promotion and safety of incapacity rights.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 13645 The Feminism of Data Privacy and Protection in Africa
Authors: Olayinka Adeniyi, Melissa Omino
Abstract:
The field of data privacy and data protection in Africa is still an evolving area, with many African countries yet to enact legislation on the subject. While African Governments are bringing their legislation to speed in this field, how patriarchy pervades every sector of African thought and manifests in society needs to be considered. Moreover, the laws enacted ought to be inclusive, especially towards women. This, in a nutshell, is the essence of data feminism. Data feminism is a new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Feminising data privacy and protection will involve thinking women, considering women in the issues of data privacy and protection, particularly in legislation, as is the case in this paper. The line of thought of women inclusion is not uncommon when even international and regional human rights specific for women only came long after the general human rights. The consideration is that these should have been inserted or rather included in the original general instruments in the first instance. Since legislation on data privacy is coming in this century, having seen the rights and shortcomings of earlier instruments, then the cue should be taken to ensure inclusive wholistic legislation for data privacy and protection in the first instance. Data feminism is arguably an area that has been scantily researched, albeit a needful one. With the spate of increase in the violence against women spiraling in the cyber world, compounding the issue of COVID-19 and the needful response of governments, and the effect of these on women and their rights, fast forward, the research on the feminism of data privacy and protection in Africa becomes inevitable. This paper seeks to answer the questions, what is data feminism in the African context, why is it important in the issue of data privacy and protection legislation; what are the laws, if any, existing on data privacy and protection in Africa, are they women inclusive, if not, why; what are the measures put in place for the privacy and protection of women in Africa, and how can this be made possible. The paper aims to investigate the issue of data privacy and protection in Africa, the legal framework, and the protection or provision that it has for women if any. It further aims to research the importance and necessity of feminizing data privacy and protection, the effect of lack of it, the challenges or bottlenecks in attaining this feat and the possibilities of accessing data privacy and protection for African women. The paper also researches the emerging practices of data privacy and protection of women in other jurisprudences. It approaches the research through the methodology of review of papers, analysis of laws, and reports. It seeks to contribute to the existing literature in the field and is explorative in its suggestion. It suggests a draft of some clauses to make any data privacy and protection legislation women inclusive. It would be useful for policymaking, academic, and public enlightenment.Keywords: feminism, women, law, data, Africa
Procedia PDF Downloads 209644 Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations
Authors: Faheem Shahzad Baloch, Muhammad Azhar Nadeem, Muhammad Amjad Nawaz, Ephrem Habyarimana, Gonul Comertpay, Tolga Karakoy, Rustu Hatipoglu, Mehmet Zahit Yeken, Vahdettin Ciftci
Abstract:
Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains.Keywords: bean germplasm, DArTseq markers, genotyping by sequencing, Turkey, whole genome diversity
Procedia PDF Downloads 245643 Optical Flow Technique for Supersonic Jet Measurements
Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi
Abstract:
This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.Keywords: Schlieren, optical flow, supersonic jets, shock shear layer
Procedia PDF Downloads 314642 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification
Procedia PDF Downloads 127641 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling
Procedia PDF Downloads 91640 Triploid Rainbow Trout (Oncorhynchus mykiss) for Better Aquaculture and Ecological Risk Management
Authors: N. N. Pandey, Raghvendra Singh, Biju S. Kamlam, Bipin K. Vishwakarma, Preetam Kala
Abstract:
The rainbow trout (Oncorhynchus mykiss) is an exotic salmonid fish, well known for its fast growth, tremendous ability to thrive in diverse conditions, delicious flesh and hard fighting nature in Europe and other countries. Rainbow trout farming has a great potential for its contribution to the mainstream economy of Himalayan states in India and other temperate countries. These characteristics establish them as one of the most widely introduced and cultured fish across the globe, and its farming is also prominent in the cold water regions of India. Nevertheless, genetic fatigue, slow growth, early maturity, and low productivity are limiting the expansion of trout production. Moreover, farms adjacent to natural streams or other water sources are subject to escape of domesticated rainbow trout into the wild, which is a serious environmental concern as the escaped fish is subject to contaminate and disrupt the receiving ecosystem. A decline in production traits due to early maturity prolongs the culture duration and affects the profit margin of rainbow trout farms in India. A viable strategy that could overcome these farming constraints in large scale operation is the production of triploid fish that are sterile and more heterozygous. For better triploidy induction rate (TR), heat shock at 28°C for 10 minutes and pressure shock 9500 psi pressure for 5 minutes is applied to green eggs with 90-100% of triploidy success and 72-80% survival upto swim-up fry stage. There is 20% better growth in aquaculture with triploids rainbow trout over diploids. As compared to wild diploid fish, larger sized and fitter triploid rainbow trout in natural waters attract to trout anglers, and support the development of recreational fisheries by state fisheries departments without the risk of contaminating existing gene pools and disrupting local fish diversity. Overall, enhancement of productivity in rainbow trout farms and trout production in coldwater regions, development of lucrative trout angling and better ecological management is feasible with triploid rainbow trout.Keywords: rainbow trout, triploids fish, heat shock, pressure shock, trout angling
Procedia PDF Downloads 125639 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals
Authors: Yunus Onur Yildiz, Mesut Kirca
Abstract:
In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation
Procedia PDF Downloads 278638 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory
Authors: Kiana Zeighami, Morteza Ozlati Moghadam
Abstract:
Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping
Procedia PDF Downloads 209637 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 430636 Effects of Lower and Upper Body Plyometric Training on Electrocardiogram Parameters of University Athletes
Authors: T. N. Uzor, C. O. Akosile, G. O. Emeahara
Abstract:
Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.Keywords: concentric, eccentric, electrocardiogram, plyometric
Procedia PDF Downloads 144635 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 196634 An Evaluation of Medical Waste in Health Facilities through Data Envelopment Analysis (DEA) Method: Turkey-Amasya Public Hospitals Union Model
Authors: Murat Iskender Aktaş, Sadi Ergin, Rasime Acar Aktaş
Abstract:
In the light of fast-paced changes and developments in the health sector, the Ministry of Health started a new structuring with decree law numbered 663 within the scope of the Project of Transformation in Health. Accordingly, hospitals should ensure patient satisfaction through more efficient, more effective use of resources and sustainable finance by placing patients in the centre and should operate to increase efficiency to its maximum level while doing these. Within this study, in order to find out how efficient the hospitals were in terms of medical waste management between the years 2011-2014, the data from six hospitals of Amasya Public Hospitals Union were evaluated separately through Data Envelopment Analysis (DEA) method. First of all, input variables were determined. Input variables were the number of patients admitted to polyclinics, the number of inpatients in clinics, the number of patients who were operated and the number of patients who applied to the laboratory. Output variable was the cost of medical wastes in Turkish liras. Each hospital’s total medical waste level before and after public hospitals union; the amounts of average medical waste per patient admitted to polyclinics, per inpatient in clinics, per patient admitted to laboratory and per operated patient were compared within each group. In addition, average medical waste levels and costs were compared for Turkey in general and Europe in general. Paired samples t-test was used to find out whether the changes (increase-decrease) after public hospitals union were statistically significant. The health facilities that were unsuccessful in terms of medical waste management before and after public hospital union and the factors that caused this failure were determined. Based on the results, for each health facility that was ineffective in terms of medical waste management, the level of improvement required for each input was determined. The results of the study showed that there was an improvement in medical waste management applications after the health facilities became a member of public hospitals union; their medical waste levels were lower than the average of Turkey and Europe while the averages of cost of disposal were the highest.Keywords: medical waste management, cost of medical waste, public hospitals, data envelopment analysis
Procedia PDF Downloads 417633 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment
Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu
Abstract:
Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.Keywords: dissolvable magnesium, coating, plasma electrolytic oxide, sealer
Procedia PDF Downloads 114