Search results for: structural lightweight concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5998

Search results for: structural lightweight concrete

5638 Study on the Strength and Durability Properties of Ternary Blended Concrete

Authors: Athira Babu, M. Nazeer

Abstract:

Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.

Keywords: concrete, GGBS, silica fume, ternary blend

Procedia PDF Downloads 482
5637 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer

Procedia PDF Downloads 368
5636 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 73
5635 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 213
5634 Analysis of High-Velocity Impacts on Concrete

Authors: Conceição, J. F. M., Rebelo H., Corneliu C., Pereira L.

Abstract:

This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts.

Keywords: high-velocity, impact, numerical analysis, experimental tests, concrete

Procedia PDF Downloads 86
5633 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 376
5632 Incorporating Ground Sand in Production of Self-Consolidating Concrete to Decrease High Paste Volume and Improve Passing Ability of Self-Consolidating Concrete

Authors: S. K. Ling, A. K. H. Kwan

Abstract:

The production of SCC (self-consolidating concrete) generally requires a fairy high paste volume, ranging from 35% to 40% of the total concrete volume. Such high paste volume would lead to low dimensional stability and high carbon footprint. Direct lowering the paste volume would deteriorate the performance of SCC, especially the passing ability. It is often observed that at narrow gap of congested reinforcements, the paste often flows in the front leaving the coarse aggregate particle behind to block the subsequent flow of concrete. Herein, it is suggested to increase the mortar volume through incorporating ground sand with a mean size of 0.3 mm while keeping the paste volume small. Trial concrete mixes with paste volumes of 30% and 34% and different ground sand contents have been tested to demonstrate how the paste volume can be lowered without sacrificing the passing ability. Overall, the results demonstrated that the addition of ground sand would enable the achievement of high passing ability at a relatively small paste volume.

Keywords: ground sand, mortar volume, paste volume, self-consolidating concrete

Procedia PDF Downloads 279
5631 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application

Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau

Abstract:

The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.

Keywords: pavement, pozzolan, rice husk ash, sustainable concrete

Procedia PDF Downloads 172
5630 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete

Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan

Abstract:

Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.

Keywords: indigenous, micro-concrete, retrofitting, vulnerable

Procedia PDF Downloads 327
5629 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements

Authors: M. Linek

Abstract:

This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.

Keywords: scanning electron microscope, computed tomography, cement concrete, airfield pavements

Procedia PDF Downloads 339
5628 Variations of Testing Concrete Mechanical Properties by European Standard and American Code

Authors: Ahmed M. Seyam, Rita Nemes, Salem Georges Nehme

Abstract:

Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them.

Keywords: concrete, ASTM, EU standards, compressive strength, flexural strength, modulus of elasticity

Procedia PDF Downloads 93
5627 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating

Procedia PDF Downloads 338
5626 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 130
5625 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
5624 Long-Term Durability of Roller-Compacted Concrete Pavement

Authors: Jun Hee Lee, Young Kyu Kim, Seong Jae Hong, Chamroeun Chhorn, Seung Woo Lee

Abstract:

Roller-compacted concrete pavement (RCCP), an environmental friendly pavement of which load carry capacity benefitted from both hydration and aggregate interlock from roller compacting, demonstrated a superb structural performance for a relatively small amount of water and cement content. Even though an excellent structural performance can be secured, it is required to investigate roller-compacted concrete (RCC) under environmental loading and its long-term durability under critical conditions. In order to secure long-term durability, an appropriate internal air-void structure is required for this concrete. In this study, a method for improving the long-term durability of RCCP is suggested by analyzing the internal air-void structure and corresponding durability of RCC. The method of improving the long-term durability involves measurements of air content, air voids, and air-spacing factors in RCC that experiences changes in terms of type of air-entraining agent and its usage amount. This test is conducted according to the testing criteria in ASTM C 457, 672, and KS F 2456. It was found that the freezing-thawing and scaling resistances of RCC without any chemical admixture was quite low. Interestingly, an improvement of freezing-thawing and scaling resistances was observed for RCC with appropriate the air entraining (AE) agent content; Relative dynamic elastic modulus was found to be more than 80% for those mixtures. In RCC with AE agent mixtures, large amount of air was distributed within a range of 2% to 3%, and an air void spacing factor ranging between 200 and 300 μm (close to 250 μm, recommended by PCA) was secured. The long-term durability of RCC has a direct relationship with air-void spacing factor, and thus it can only be secured by ensuring the air void spacing factor through the inclusion of the AE in the mixture.

Keywords: durability, RCCP, air spacing factor, surface scaling resistance test, freezing and thawing resistance test

Procedia PDF Downloads 253
5623 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model

Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry

Abstract:

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete

Procedia PDF Downloads 127
5622 Seismic Vulnerability Mitigation of Non-Engineered Buildings

Authors: Muhammad Tariq A. Chaudhary

Abstract:

The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centres and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, Unreinforced Masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.

Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening

Procedia PDF Downloads 286
5621 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments

Authors: R. Malathy

Abstract:

High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.

Keywords: bio materials, Calatropis gigantea, self curing concrete, Spinacea oleracea

Procedia PDF Downloads 346
5620 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.

Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content

Procedia PDF Downloads 335
5619 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources

Authors: M. Murmu, Govardhan, J. Satya Eswari

Abstract:

Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.

Keywords: GGBS, sand, concrete, workability

Procedia PDF Downloads 503
5618 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 542
5617 Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Soner Guler, Eylem Guzel, Mustafa Gülen

Abstract:

Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Eurocode 4, ACI design codes

Procedia PDF Downloads 388
5616 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse

Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas

Abstract:

This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.

Keywords: ultrasonic, concrete, thickness, pulse echo, void

Procedia PDF Downloads 330
5615 Analyzing the Effect of Biomass and Cementitious Materials on Air Content in Concrete

Authors: Mohammed Albahttiti, Eliana Aguilar

Abstract:

A push for sustainability in the concrete industry is increasing. Cow manure itself is becoming a problem and having the potential solution to use it in concrete as a cementitious replacement would be an ideal solution. For cow manure ash to become a well-rounded substitute, it would have to meet the right criteria to progress in becoming a more popular idea in the concrete industry. This investigation primarily focuses on how the replacement of cow manure ash affects the air content and air void distribution in concrete. In order to assess these parameters, the Super Air Meter (SAM) was used to test concrete in this research. In addition, multiple additional tests were performed, which included the slump test, temperature, and compression test. The strength results of the manure ash in concrete were promising. The manure showed compression strength results that are similar to that of the other supplementary cementitious materials tested. On the other hand, concrete samples made with cow manure ash showed 2% air content loss and an increasing SAM number proportional to cow manure content starting at 0.38 and increasing to 0.8. In conclusion, while the use of cow manure results in loss of air content, it results in compressive strengths similar to other supplementary cementitious materials.

Keywords: air content, biomass ash, cow manure ash, super air meter, supplementary cementitious materials

Procedia PDF Downloads 149
5614 A Study on the Influence of Internal Sulfate on the Properties of Self-Compacting Concrete

Authors: Abbas S. Al-Ameeri Rawaa H. Issa

Abstract:

The internal sulfate attack is considered as a very important problem of concrete manufacture in Iraq and Middle East countries. Sulfate drastically influences the properties of concrete. This experimental study is aimed at investigating the effect of internal sulfates on fresh and some of the hardened properties of self compacting concrete (SCC) made from locally available materials. Tests were conducted on five mixes, with five SO3 levels (3.9, 5, 6, 7 and 8) (% by wt. of cement). The last four SO3 levels are outside the limits of the Iraqi specifications (IQS NO.45/1984). The results indicated that sulfate passively influenced the fresh properties such as decreased workability, and effect on hardened properties of the self compacting concrete. Also, the result indicated the optimum SO3 content which gives maximum strength and little tendency to expanding, which showed up at a content equal to 5% (by wt of cement), is more than acceptable limits of Iraqi specifications. Further increase in sulfates content in concrete after this optimum value showed a considerable reduction in mechanical properties of self-compacting concrete, and increment in expansion of concrete. The percentages of reduction in compressive strength, splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity at their later age were ranged between 10.89-36.14%, 12.90-33.33%, 7.98-36.35%, 16.36 -38.37% and 1.03-10.88% respectively.

Keywords: self-compacting concrete, sulfate attack, internal sulfate attack, fresh properties, harden properties, optimum SO3 content

Procedia PDF Downloads 270
5613 Round Addition DFA on Lightweight Block Ciphers with On-The-Fly Key Schedule

Authors: Hideki Yoshikawa, Masahiro Kaminaga, Arimitsu Shikoda, Toshinori Suzuki

Abstract:

Round addition differential fault analysis (DFA) using operation bypassing for lightweight block ciphers with on-the-fly key schedule is presented. For 64-bit KLEIN and 64-bit LED, it is shown that only a pair of correct ciphertext and faulty ciphertext can derive the secret master key. For PRESENT, one correct ciphertext and two faulty ciphertexts are required to reconstruct the secret key.

Keywords: differential fault analysis (DFA), round addition, block cipher, on-the-fly key schedule

Procedia PDF Downloads 703
5612 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios

Authors: Qaiser uz Zaman Khan

Abstract:

This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.

Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers

Procedia PDF Downloads 91
5611 Experimental Evaluation of Compressive Strength of Concrete with Several Local Sand Exposed to Freeze-Thaw Cycles

Authors: Mlk. Khouadjia, B. Mezghiche

Abstract:

The environment protection has led to a growing interest in the use of crushed sand, which is not correctly exploited due to the high rate of fine particles that it contains and which affect concrete properties. This study will examine the variation of the compressive strength of concrete with several local areas of sand exposed to freeze-thaw cycles and chemical solutions. The experiments have been realized on crushed, river, and dune sands. We use software (MATLAB) to find the coefficient of particle shape. Finally, we have found a relationship between the reference concrete without modification and concrete modified with river and dune sands to predict the variations of resistance after curing in different environments. The results showed that the behavior of concrete is different according to the types of sand and the environment of exposition.

Keywords: crushed sand, compressive strength, freeze-thaw, MATLAB, dune sand, river sand

Procedia PDF Downloads 134
5610 Adherence Induced Formwork Removal in Small-Scale Pull-Off Tensile Tests

Authors: Nicolas Spitz, Nicolas Coniglio, Mohamed El Mansori, Alex Montagne, Sabeur Mezghani

Abstract:

Nowadays buildings' construction is performed by pouring concrete into molds referred to as formworks that are usually prefabricated metallic modules. Defects such as stripping may possibly form during the removal of the formwork if the interfacial bonding between the concrete and the formwork is high. A new pull-off tensile test was developed in our laboratory to simulate small-scale formwork removals. The concrete-to-formwork adherence force was measured on bare and coated formworks with different surface signatures. The used concrete was a mixture largely used on building sites and contains CEM I Portland cement and calcareous filler. The concrete surface appearance and the type of failures at the concrete-formwork interface have been investigated. The originality of this near-to-surface test was to compare the laboratory-measured adherence forces to the on-site observations. Based upon the small-scale laboratory test results, functional formwork specifications with low adherence to concrete was proposed in terms of superficial signature characteristics.

Keywords: concrete-formwork adherence, interfacial bonding, skin formwork functionality, small-scale pull-off tensile test

Procedia PDF Downloads 245
5609 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 158