Search results for: Langmuir adsorption isotherm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 998

Search results for: Langmuir adsorption isotherm

638 Wettability Alter of a Sandstone Rock by Graphene Oxide Adsorption

Authors: J. Gómez, J. Rodriguez, N. Santos, E. Mejía-Ospino

Abstract:

The wettability of the minerals present in a reservoir is a determining property in the recovery factor. One of the strategies proposed to increase recovery is based on altering the wettability of oil reservoir rocks. Approximately 60% of world crude oil reservoirs have sandstone-type host rocks; for that, it is very important to develop efficient methodologies to alter the wettability of these rocks. In this study, the alteration of the wettability of a sandstone rock due to graphene oxide (GO) adsorption was evaluated. The effect of GO concentration, salinity, Ca2+ ions, and pH on interfacial tension and contact angle was determined. The results show that GO adsorption induces significant changes in rock wettability. For high GO concentrations and low salinity, pH proved to be a determining factor in the alteration of wettability. Under certain conditions, surface wettability changes from highly oleophilic (144,8°) to intermediate oil wettability (91,2°).

Keywords: enhanced oil recovery, graphene oxide, interfacial tension, nanofluid, wettability

Procedia PDF Downloads 108
637 Adsorption of 17a-Ethinylestradiol on Activated Carbon Based on Sewage Sludge in Aqueous Medium

Authors: Karoline Reis de Sena

Abstract:

Endocrine disruptors are unregulated or not fully regulated compounds, even in the most developed countries, and which can be a danger to the environment and human health. They pass untreated through the secondary stage of conventional wastewater treatment plants, then the effluent from the wastewater treatment plants is discharged into the rivers, upstream and downstream from the drinking water treatment plants that use the same river water as the tributary. Long-term consumption of drinking water containing low concentrations of these compounds can cause health problems; these are persistent in nature and difficult to remove. In this way, research on emerging pollutants is expanding and is fueled by progress in finding the appropriate method for treating wastewater. Adsorption is the most common separation process, it is a simple and low-cost operation, but it is not eco-efficient. Concomitant to this, biosorption arises, which is a subcategory of adsorption where the biosorbent is biomass and which presents numerous advantages when compared to conventional treatment methods, such as low cost, high efficiency, minimization of the use of chemicals, absence of need for additional nutrients, biosorbent regeneration capacity and the biomass used in the production of biosorbents are found in abundance in nature. Thus, the use of alternative materials, such as sewage sludge, for the synthesis of adsorbents has proved to be an economically viable alternative, together with the importance of valuing the generated by-product flows, as well as managing the problem of their correct disposal. In this work, an alternative for the management of sewage sludge is proposed, transforming it into activated carbon and using it in the adsorption process of 17a-ethinylestradiol.

Keywords: 17α-ethinylestradiol, adsorption, activated carbon, sewage sludge, micropollutants

Procedia PDF Downloads 95
636 Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater

Authors: Lawrence Mzukisi Madikizela, Luke Chimuka

Abstract:

Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent.

Keywords: adsorption, molecularly imprinted polymer, multi template, pharmaceuticals

Procedia PDF Downloads 304
635 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay

Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza

Abstract:

The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.

Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.

Procedia PDF Downloads 508
634 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 241
633 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube

Procedia PDF Downloads 235
632 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media

Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde

Abstract:

Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.

Keywords: adsorption, aqueous media, fishbone, kinetic study

Procedia PDF Downloads 133
631 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 206
630 Effect of Halloysite on Heavy Metals Fate during Solid Waste Pyrolysis: A Combinatorial Experimental/Computational Study

Authors: Tengfei He, Mengjie Zhang, Baosheng Jin

Abstract:

In this study, the low-cost halloysite (Hal) was utilized for the first time to enhance the solid-phase enrichment and stability of heavy metals (HMs) during solid waste pyrolysis through experimental and theoretical methods, and compared with kaolinite (Kao). Experimental results demonstrated that Hal was superior to Kao in improving the solid-phase enrichment of HMs. Adding Hal reduced the proportion of HMs in the unstable fraction (F1+F2), consequently lowering the environmental risk of biochar and the extractable state of HMs. Through Grand canonical Monte Carlo and Density Functional Theory (DFT) simulations, the adsorption amounts and adsorption mechanisms of Cd/Pb compound on Hal/Kao surfaces were analyzed. The adsorption amounts of HMs by Hal were significantly higher than Kao and decreased with increasing temperature, and the difference in adsorption performance caused by structural bending was negligible. The DFT results indicated that Cd/Pb monomers were stabilized by establishing covalent bonds with OH or reactive O atoms on the Al-(0 0 1) surface, whereas the covalent bonds with ionic bonding properties formed between Cl atoms and unsaturated Al atoms played a crucial role in stabilizing HM chlorides. This study highlights the potential of Hal in stabilizing HMs during pyrolysis without requiring any modifications.

Keywords: heavy metals, halloysite, density functional theory, grand canonical Monte Carlo

Procedia PDF Downloads 75
629 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants

Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti

Abstract:

The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.

Keywords: carbon steel, oilfield, corrosion, anionic surfactants

Procedia PDF Downloads 95
628 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment

Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad

Abstract:

Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.

Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation

Procedia PDF Downloads 62
627 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 72
626 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water

Authors: Laura Frydel

Abstract:

Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.

Keywords: adsorption, cellulose, chloroxylenol, halloysite

Procedia PDF Downloads 191
625 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents

Authors: A. Kesraoui, M. Seffen

Abstract:

Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.

Keywords: adsorption, alternating current, dyes, modeling

Procedia PDF Downloads 160
624 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey

Abstract:

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH- were prepared by suspension polymerization of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were well-described by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Keywords: anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification

Procedia PDF Downloads 362
623 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 78
622 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies

Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari

Abstract:

A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.

Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand

Procedia PDF Downloads 157
621 A Dynamic Column Adsorption Study of Methyl Blue on Synthesis onto Synthesized Chitosan Immobilized Sawdust Cellulose Nanocrystals

Authors: Opeyemi A. Oyewo, Seshibe Makgato

Abstract:

This paper presents the synthesis, characterization, and application of pelletized chitosan immobilized sawdust cellulose nanocrystals (PCCN) in a fixed-bed column for the continuous adsorption of methyl blue (MB) from water. The product was characterized using FT-IR, XRD, and SEM analysis. Microstructural examination revealed that the pellets are porous and spherical. XRD examination revealed phases that can be attributed to the presence of chitosan in PCCN. The effects of starting concentration, bed depth, and flow rate on synthetic water were explored. To identify MB breakthrough behaviour, performance indices such as bed volume, adsorbent exhaustion rate, and service time were investigated. Furthermore, the breakthrough data were incorporated into both the Thomas and Bohart-Adams models. The Thomas model was suitable for describing MB breakthrough curves. However, more research with diverse water matrices may be required to assess the resilience of PCCN.

Keywords: adsorption, dynamic, methyl blue, pelletization

Procedia PDF Downloads 35
620 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study

Authors: Vincenzo Piemonte

Abstract:

The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.

Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling

Procedia PDF Downloads 256
619 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 391
618 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering

Procedia PDF Downloads 317
617 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System

Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux

Abstract:

Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.

Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration

Procedia PDF Downloads 265
616 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs

Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua

Abstract:

Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.

Keywords: adsorption, organic dyes, iodine, metal organic frameworks

Procedia PDF Downloads 276
615 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 112
614 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 163
613 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption

Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa

Abstract:

The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.

Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential

Procedia PDF Downloads 121
612 Removal of Methyl Green by an Algerian Calcic Clay

Authors: Feddal Imene, Boumediene Youssra, Mimanne Goussem

Abstract:

The history of the environment and its chemistry is above all the history of its pollution. For a large part, it is the changes made in the air, water and soil by human beings. From there, we can define that pollution is an unfavorable modification of the natural environment that appears as a by-product of human action, through direct and indirect effects. The protection and preservation of the environment is one of the pillars of sustainable development, which is currently a major issue for the future of man and the planet. Currently, humanity is facing an alarming increase in the pollution of the natural environment by various organic or inorganic materials. The objective of our work is to study the adsorption of a textile dye which is known in the industrial environment, methyl green, on raw calcic clay. Our material was characterized by X-ray diffraction (XRD) Fourier transform infrared (FTIR), we also determined its cation exchange capacity (CEC), pHzc and specific surface by Methylene Blue method. The kinetic and thermodynamic study of the adsorption of methyl green was studied, these experiments resulted that the adsorption of the dye follows pseudo second order kinetics, and according to the thermodynamic study and the study of the probability we can say that we have a physisorption.

Keywords: calcic clay, dye, materials, environment

Procedia PDF Downloads 58
611 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal

Authors: Motwkel M. Alhaj, Bashir M. Elhassan

Abstract:

The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.

Keywords: water treatment, fluoride, adsorption, charcoal, Sudan

Procedia PDF Downloads 116
610 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development

Authors: Komal Verma, V. S. Moholkar

Abstract:

This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity

Procedia PDF Downloads 116
609 Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite

Authors: T. Meftah, M. M. Zerafat, S. Sabbaghi

Abstract:

Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration.

Keywords: nitrate removal, zeolite, surface modification, organosilane

Procedia PDF Downloads 498