Search results for: professional learning communities (PLCs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10806

Search results for: professional learning communities (PLCs)

6996 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: editorialization, open educational resources, pedagogical alignment, produsage, repeatable self-correcting exercises, team roles

Procedia PDF Downloads 126
6995 Social Media and Counseling: Opportunities, Risks and Ethical Considerations

Authors: Kyriaki G. Giota, George Kleftaras

Abstract:

The purpose of this article is to briefly review the opportunities that social media presents to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.

Keywords: social media, counseling, risks, ethics

Procedia PDF Downloads 428
6994 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 95
6993 A Study of Social Dynamics in English Language Learning Exploring Peer Relationships and Interaction Among Kindergarten Students in Taiwan

Authors: Zeynep Nagihan Millet, Yun- Ping Ge

Abstract:

Teaching English as a foreign language (EFL) to Taiwanese kindergarten students presents challenges due to their young age and cognitive development primarily occurring in their first language (Mandarin). This limits consistent exposure to English. Integrating content-based teaching with language instruction offers an effective approach to address these challenges. This study investigates the impact of peer interactions on English language learning among kindergarten students in Taiwan. This study examines the impact of peer interactions on vocabulary acquisition and basic language skills development through content-based teaching in bilingual classrooms. Grounded in the Theory of Social Development and Positioning Theory, the research employs a qualitative observational method, collecting data from classroom observations and peer interactions of 3-5-year-old Taiwanese students over five weeks. The findings reveal that socially dominant children influence their peers, enhancing language development through imitation and internalizing complex language patterns. Integrating Chinese and English content teaching facilitates natural vocabulary acquisition and strengthens peer collaboration, highlighting the significance of peer interactions and social learning in bilingual early childhood education. These results demonstrate the effectiveness of a social learning approach, validating the application of the Theory of Social Development in bilingual kindergarten education. This research provides valuable insights into effective strategies for bilingual early childhood education.

Keywords: kindergarten, peer relationship, positioning, social interaction

Procedia PDF Downloads 11
6992 Peer Instruction, Technology, Education for Textile and Fashion Students

Authors: Jimmy K. C. Lam, Carrie Wong

Abstract:

One of the key goals on Learning and Teaching as documented in the University strategic plan 2012/13 – 2017/18 is to encourage active learning, the use of innovative teaching approaches and technology, and promoting the adoption of flexible and varied teaching delivery methods. This research reported the recent visited to Prof Eric Mazur at Harvard University on Peer Instruction: Collaborative learning in large class and innovative use of technology to enable new mode of learning. Peer Instruction is a research-based, interactive teaching method developed by Prof. Eric Mazur at Harvard University in the 1990s. It has been adopted across the disciplines, institutional type and throughout the world. One problem with conventional teaching lies in the presentation of the material. Frequently, it comes straight out of textbook/notes, giving students little incentive to attend class. This traditional presentation is always delivered as monologue in front of passive audience. Only exceptional lecturers are capable of holding students’ attention for an entire lecture period. Consequently, lectures simply reinforce students’ feelings that the most important step in mastering the material is memorizing a zoo of unrelated examples. In order to address these misconceptions about learning, Prof Mazur’s Team developed “Peer Instruction”, a method which involves students in their own learning during lectures and focuses their attention on underling concepts. Lectures are interspersed with conceptual questions called Concept Tests, designed to expose common difficulties in understanding the material. The students are given one or two minutes to think about the question and formulate their own answers; they then spend two or three minutes discussing their answers in a group of three or four, attempting to reach consensus on the correct answer. This process forces the students to think through the arguments being developed, and enable them to assess their understanding concepts before they leave the classroom. The findings from Peer Instruction and innovative use of technology on teaching at Harvard University were applied to the first year Textiles and Fashion students in Hong Kong. Survey conducted from 100 students showed that over 80% students enjoyed the flexibility of peer instruction and 70% of them enjoyed the instant feedback from the Clicker system (Student Response System used at Harvard University). Further work will continue to explore the possibility of peer instruction to art and fashion students.

Keywords: peer instruction, education, technology, fashion

Procedia PDF Downloads 318
6991 Analysis of Policy Issues on Computer-Based Testing in Nigeria

Authors: Samuel Oye Bandele

Abstract:

A policy is a system of principles to guide activities and strategic decisions of an organisation in order to achieve stated objectives and meeting expected outcomes. A Computer Based Test (CBT) policy is therefore a statement of intent to drive the CBT programmes, and should be implemented as a procedure or protocol. Policies are hence generally adopted by an organization or a nation. The concern here, in this paper, is the consideration and analysis of issues that are significant to evolving the acceptable policy that will drive the new CBT innovation in Nigeria. Public examinations and internal examinations in higher educational institutions in Nigeria are gradually making a radical shift from Paper Based or Paper-Pencil to Computer-Based Testing. The need to make an objective and empirical analysis of Policy issues relating to CBT became expedient. The following are some of the issues on CBT evolution in Nigeria that were identified as requiring policy backing. Prominent among them are requirements for establishing CBT centres, purpose of CBT, types and acquisition of CBT equipment, qualifications of staff: professional, technical and regular, security plans and curbing of cheating during examinations, among others. The descriptive research design was employed based on a population consisting of Principal Officers (Policymakers), Staff (Teaching and non-Teaching-Policy implementors), and CBT staff ( Technical and Professional- Policy supports) and candidates (internal and external). A fifty-item researcher-constructed questionnaire on policy issues was employed to collect data from 600 subjects drawn from higher institutions in South West Nigeria, using the purposive and stratified random sampling techniques. Data collected were analysed using descriptive (frequency counts, means and standard deviation) and inferential (t-test, ANOVA, regression and Factor analysis) techniques. Findings from this study showed, among others, that the factor loadings had significantly weights on the organizational and National policy issues on CBT innovation in Nigeria.

Keywords: computer-based testing, examination, innovation, paper-based testing, paper pencil based testing, policy issues

Procedia PDF Downloads 251
6990 Promoting Compassionate Communication in a Multidisciplinary Fellowship: Results from a Pilot Evaluation

Authors: Evonne Kaplan-Liss, Val Lantz-Gefroh

Abstract:

Arts and humanities are often incorporated into medical education to help deepen understanding of the human condition and the ability to communicate from a place of compassion. However, a gap remains in our knowledge of compassionate communication training for postgraduate medical professionals (as opposed to students and residents); how training opportunities include and impact the artists themselves, and how train-the-trainer models can support learners to become teachers. In this report, the authors present results from a pilot evaluation of the UC San Diego Health: Sanford Compassionate Communication Fellowship, a 60-hour experiential program that uses theater, narrative reflection, poetry, literature, and journalism techniques to train a multidisciplinary cohort of medical professionals and artists in compassionate communication. In the culminating project, fellows design and implement their own projects as teachers of compassionate communication in their respective workplaces. Qualitative methods, including field notes and 30-minute Zoom interviews with each fellow, were used to evaluate the impact of the fellowship. The cohort included both artists (n=2) and physicians representing a range of specialties (n=7), such as occupational medicine, palliative care, and pediatrics. The authors coded the data using thematic analysis for evidence of how the multidisciplinary nature of the fellowship impacted the fellows’ experiences. The findings show that the multidisciplinary cohort contributed to a greater appreciation of compassionate communication in general. Fellows expressed that the ability to witness how those in different fields approached compassionate communication enhanced their learning and helped them see how compassion can be expressed in various contexts, which was both “exhilarating” and “humbling.” One physician expressed that the fellowship has been “really helpful to broaden my perspective on the value of good communication.” Fellows shared how what they learned in the fellowship translated to increased compassionate communication, not only in their professional roles but in their personal lives as well. A second finding was the development of a supportive community. Because each fellow brought their own experiences and expertise, there was a sense of genuine ability to contribute as well as a desire to learn from others. A “brave space” was created by the fellowship facilitators and the inclusion of arts-based activities: a space that invited vulnerability and welcomed fellows to make their own meaning without prescribing any one answer or right way to approach compassionate communication. This brave space contributed to a strong connection among the fellows and reports of increased well-being, as well as multiple collaborations post-fellowship to carry forward compassionate communication training at their places of work. Results show initial evidence of the value of a multidisciplinary fellowship for promoting compassionate communication for both artists and physicians. The next steps include maintaining the supportive fellowship community and collaborations with a post-fellowship affiliate faculty program; scaling up the fellowship with non-physicians (e.g., nurses and physician assistants); and collecting data from family members, colleagues, and patients to understand how the fellowship may be creating a ripple effect outside of the fellowship through fellows’ compassionate communication.

Keywords: compassionate communication, communication in healthcare, multidisciplinary learning, arts in medicine

Procedia PDF Downloads 73
6989 Redefining "Dedhee" in Terms of Knowledge Gathering and Conserving Hazara Literature

Authors: Urooj Shafique, Salman Jamil

Abstract:

In the context of an urban human life, city requires to meeting some standards which, at a glance are called the standards of a quality life. Measuring the quality of life according to particular social, economic and cultural conditions of a country and also the emphasis of a country twenty years visions on this issue has special importance. Cultural gathering spaces improve social and economic vitality on one side and on the other side provide favorable conditions for citizen leisure. But unfortunately these cultural gathering spaces in our society are losing their meaning and importance with time. Like coffee houses and libraries. Dedhee was the most prominent place among the cultural gathering spaces in Hazara division. People used to visit them in order to get something out of these spaces. At present they lie in our cities as places of no interest. Libraries are converted into storage houses where books lie untouched for years and years. The aim of my project is to create unique space that engage community members in the learning and creation process, where people can share their knowledge with others as well as enjoy their personal space. The spaces are flexible enough to accommodate people of different moods and interests, with the purpose of helping communities to become aware of their own cultures and to be socially engaged. The site for this specific project has been selected near Cantonment Park Abbottabad, Pakistan. The city of Abbottabad is famous for its writers, poets and storytellers. The site is selected next to the Cantonment Park, at a central location in the whole city so that it can attract users from almost every point of the city. The project provides a cultural gathering space for the people of the city where they can sit and discuss their ideas within a creative and expressive environment, which can represent the cultures of a community.

Keywords: cultural gathering space, Dedhee, Hazara literature, intellectuals’ hub

Procedia PDF Downloads 395
6988 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 240
6987 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 150
6986 Efficacy of Learning: Digital Sources versus Print

Authors: Rahimah Akbar, Abdullah Al-Hashemi, Hanan Taqi, Taiba Sadeq

Abstract:

As technology continues to develop, teaching curriculums in both schools and universities have begun adopting a more computer/digital based approach to the transmission of knowledge and information, as opposed to the more old-fashioned use of textbooks. This gives rise to the question: Are there any differences in learning from a digital source over learning from a printed source, as in from a textbook? More specifically, which medium of information results in better long-term retention? A review of the confounding factors implicated in understanding the relationship between learning from the two different mediums was done. Alongside this, a 4-week cohort study involving 76 1st year English Language female students was performed, whereby the participants were divided into 2 groups. Group A studied material from a paper source (referred to as the Print Medium), and Group B studied material from a digital source (Digital Medium). The dependent variables were grading of memory recall indexed by a 4 point grading system, and total frequency of item repetition. The study was facilitated by advanced computer software called Super Memo. Results showed that, contrary to prevailing evidence, the Digital Medium group showed no statistically significant differences in terms of the shift from Remember (Episodic) to Know (Semantic) when all confounding factors were accounted for. The shift from Random Guess and Familiar to Remember occurred faster in the Digital Medium than it did in the Print Medium.

Keywords: digital medium, print medium, long-term memory recall, episodic memory, semantic memory, super memo, forgetting index, frequency of repetitions, total time spent

Procedia PDF Downloads 295
6985 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing

Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska

Abstract:

Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.

Keywords: learning academic words, writing essays, cognitive load, english as an L2

Procedia PDF Downloads 77
6984 RE:SOUNDING a 2000-Year-Old Vietnamese Dong Son Bronze Drum; Artist-Led Collaborations outside the Museum to Challenge the Impasse of Repatriating and Rematriating Cultural Instruments

Authors: H. A. J. Nguyen, V. A. Pham

Abstract:

RE:SOUNDING is an ongoing research project and artwork seeking to return the sound and knowledge of Dong Son bronze drums back to contemporary musicians. Colonial collections of ethnographic instruments are problematic in how they commit acts of conceptual, cultural, and acoustic silencing. The collection (or more honestly), the plagiarism, and pillaging of these instruments have systemically separated them from living and breathing cultures. This includes diasporic communities, who have come to resettle in close proximity - but still have little access - to the museums and galleries that display their cultural objects. Despite recent attempts to 'open up' and 'recognise' the tensions and violence of these ethnographic collections, many museums continue to structurally organize and reproduce knowledge with the same procedural distance and limitations of imperial condescension. Impatient with the slowness of these museums, our diaspora led collaborations participated in the opaque economy of the auction market to gain access and begin the process of digitally recording and archiving the actual sounds of the ancient Dong Son drum. This self-directed, self-initiated artwork not only acoustically reinvigorated an ancient instrument but redistributed these sonic materials back to contemporary musicians, composers, and their diasporic communities throughout Vietnam, South East Asia, and Australia. Our methodologies not only highlight the persistent inflexibility of museum infrastructures but demand that museums refrain from their paternalistic practice of risk-averse ownership, to seriously engage with new technologies and political formations that require all public institutions to be held accountable for the ethical and intellectual viability of their colonial collections. The integrated and practical resolve of diasporic artists and their communities are more than capable of working with new technologies to reclaim and reinvigorate what is culturally and spiritually theirs. The motivation to rematriate – as opposed to merely repatriate – the acoustic legacies of these instruments to contemporary musicians and artists is a new model for decolonial and restorative practices. Exposing the inadequacies of western scholarship that continues to treat these instruments as discreet, disembodied, and detached artifacts, these collaborative strategies have thus far produced a wealth of new knowledge – new to the west perhaps – but not that new to these, our own communities. This includes the little-acknowledged fact that the Dong Son drum were political instruments of war and technology, rather than their simplistic description in the museum and western academia as agrarian instruments of fertility and harvest. Through the collective and continued sharing of knowledge and sound materials produced from this research, these drums are gaining a contemporary relevance beyond the cultural silencing of the museum display cabinet. Acknowledgement: We acknowledge the Wurundjeri and Boon Wurrung of the Kulin Nation and the Gadigal of the Eora Nation where we began this project. We pay our respects to the Peoples, Lands, Traditional Custodians, Practices, and Creator Ancestors of these Great Nations, as well as those First Nations peoples throughout Australia, Vietnam, and Indonesia, where this research continues, and upon whose stolen lands and waterways were never ceded.

Keywords: acoustic archaeology, decolonisation, museum collections, rematriation, repatriation, Dong Son, experimental music, digital recording

Procedia PDF Downloads 156
6983 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech

Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori

Abstract:

Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.

Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing

Procedia PDF Downloads 137
6982 The Desire to Know: Arnold’s Contribution to a Psychological Conceptualization of Academic Motivation

Authors: F. Ruiz-Fuster

Abstract:

Arnold’s redefinition of human motives can sustain a psychology of education which emphasizes the beauty of knowledge and the exercise of intellectual functions. Thus, education instead of focusing on skills and learning by doing would be centered on ‘the widest reaches of the human spirit’. One way to attain it is by developing children’s inherent interest. Arnold takes into account the fact that the desire to know is the inherent interest which leads students to explore and learn. She also emphasizes the need of exercising human functions as thinking, judging and reasoning. According to Arnold, the influence of psychological theories of motivation in education has derived in considering that all learning and school tasks should derive from children’s needs and impulses. The desire to know and the curiosity have not been considered as basic and active as any instinctive drive or basic need, so there has been an attempt to justify and understand how biological drives guide student’s learning. However, understanding motives and motivation not as a drive, an instinct or an impulse guided by our basic needs, but as a want that leads to action can help to understand, from a psychological perspective, how teachers can motivate students to learn, strengthening their desire and interest to reason and discover the whole new world of knowledge.

Keywords: academic motivation, interests, desire to know, educational psychology, intellectual functions

Procedia PDF Downloads 154
6981 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 133
6980 Jail Reentry in Rural America: A Quasi-Experimental Examination of a Rural Behavioral Health Reentry Program

Authors: Debra L. Stanley, Gabriela Wasileski

Abstract:

Offenders face many challenges as they transition from being incarcerated to the community, ranging from housing and employment needs to long standing problems with addictions and mental health issues. A lack of appropriate behavioral health services in the more remote parts of the United States has led to a significant illegal substance abuse problem, housing instability, and unaddressed mental health and trauma issues. High rates of poverty and unemployment exacerbate the growing behavioral health issues, drug overdoses, co-occurring disorders, and crime that are so prevalent across rural communities. This study examines the challenges of rural jail reentry faced by offenders in a treatment capacity. The client-centered evidence-based program is uniquely designed to provide continuity of care that focuses on issues which affect rural communities. Prior to release from jail, individuals go through comprehensive assessment screenings to measure mental health and substance use disorder as well as trauma and prior crime victimization histories; the assessments help to target client-specific services. The quasi-experimental research design tracks clients throughout their recovery and reintegration into the community. Individuals in a rural program often do not have the benefit of easy access or peer mentoring that is so often found in urban recovery programs. Therefore, much of the support is provided through telehealth and e-services. The goal of this study is to explore the nature of rural reentry programs and measures of recidivism, drug overdoses, and other behavioral health needs and successful reentry to include stable housing and employment.

Keywords: jail reentry, rehabilitation, behavioral health, drug abuse, recidivism

Procedia PDF Downloads 101
6979 Leveraging Engineering Education and Industrial Training: Learning from a Case Study

Authors: Li Wang

Abstract:

The explosive of technology advances has opened up many avenues of career options for engineering graduates. Hence, how relevant their learning at university is very much dependent on their actual jobs. Bridging the gap between education and industrial practice is important, but it also becomes evident how both engineering education and industrial training can be leveraged at the same time and balance between what students should grasp at university and what they can be continuously trained at the working environment. Through a case study of developing a commercial product, this paper presents the required level of depth of technical knowledge and skills for some typical engineering jobs (for mechanical/materials engineering). It highlights the necessary collaboration for industry, university, and accreditation bodies to work together to nurture the next generation of engineers.

Keywords: leverage, collaboration, career, industry, engineering education

Procedia PDF Downloads 102
6978 Challenge Based Learning Approach for a Craft Mezcal Kiln Energetic Redesign

Authors: Jonathan A. Sánchez Muñoz, Gustavo Flores Eraña, Juan M. Silva

Abstract:

Mexican Mezcal industry has reached attention during the last decade due to it has been a popular beverage demanded by North American and European markets, reaching popularity due to its crafty character. Despite its wide demand, productive processes are still made with rudimentary equipment, and there is a lack of evidence to improve kiln energy efficiency. Tec21 is a challenge-based learning curricular model implemented by Tecnológico de Monterrey since 2019, where each formation unit requires an industrial partner. “Problem processes solution” is a formation unity designed for mechatronics engineers, where students apply the acquired knowledge in thermofluids and apply electronic. During five weeks, students are immersed in an industrial problem to obtain a proper level of competencies according to formation unit designers. This work evaluates the competencies acquired by the student through qualitative research methodology. Several evaluation instruments (report, essay, and poster) were selected to evaluate etic argumentation, principles of sustainability, implemented actions, process modelling, and redesign feasibility.

Keywords: applied electronic, challenge based learning, competencies, mezcal industry, thermofluids

Procedia PDF Downloads 123
6977 Rights-Based Approach to Artificial Intelligence Design: Addressing Harm through Participatory ex ante Impact Assessment

Authors: Vanja Skoric

Abstract:

The paper examines whether the impacts of artificial intelligence (AI) can be meaningfully addressed through the rights-based approach to AI design, investigating in particular how the inclusive, participatory process of assessing the AI impact would make this viable. There is a significant gap between envisioning rights-based AI systems and their practical application. Plausibly, internalizing human rights approach within AI design process might be achieved through identifying and assessing implications of AI features human rights, especially considering the case of vulnerable individuals and communities. However, there is no clarity or consensus on how such an instrument should be operationalised to usefully identify the impact, mitigate harms and meaningfully ensure relevant stakeholders’ participation. In practice, ensuring the meaningful inclusion of those individuals, groups, or entire communities who are affected by the use of the AI system is a prerequisite for a process seeking to assess human rights impacts and risks. Engagement in the entire process of the impact assessment should enable those affected and interested to access information and better understand the technology, product, or service and resulting impacts, but also to learn about their rights and the respective obligations and responsibilities of developers and deployers to protect and/or respect these rights. This paper will provide an overview of the study and practice of the participatory design process for AI, including inclusive impact assessment, its main elements, propose a framework, and discuss the lessons learned from the existing theory. In addition, it will explore pathways for enhancing and promoting individual and group rights through such engagement by discussing when, how, and whom to include, at which stage of the process, and what are the pre-requisites for meaningful and engaging. The overall aim is to ensure using the technology that works for the benefit of society, individuals, and particular (historically marginalised) groups.

Keywords: rights-based design, AI impact assessment, inclusion, harm mitigation

Procedia PDF Downloads 155
6976 Empowering Business Students with Intercultural Communicative Competence through Multicultural Literature

Authors: Dorsaf Ben Malek

Abstract:

The function of culture in language teaching changed because of globalization and the latest technologies. English became a lingua franca which resulted in altering the teaching objectives. The re-evaluation of cultural awareness is one of them. Business English teaching has also been subject to all these changes. It is therefore a wrong idea if we try to consider it as a diffusion of unlimited listing of lexis, diagrams, charts, and statistics. In fact, business students’ future career will require business terminology together with intercultural communicative competence (ICC) to handle different multicultural encounters and contribute to the international community. The first part of this paper is dedicated to the necessity of empowering business students with intercultural communicative competence and the second turns around the potential of multicultural literature in implementing ICC in business English teaching. This was proved through a qualitative action research done on a group of Tunisian MA business students. It was an opportunity to discover the potential of multicultural literature together with inquiry-based learning in enhancing business students’ intercultural communicative competence. Data were collected through classroom observations, journals and semi-structured interviews. Results were in favour of using multicultural literature to enhance business students’ ICC. In addition, the short story may be a motivating tool to read literature, and inquiry-based learning can be an effective approach to teaching literature.

Keywords: intercultural communicative competence, multicultural literature, short stories, inquiry-based learning

Procedia PDF Downloads 337
6975 The Analysis of Changes in Urban Hierarchy of Isfahan Province in the Fifty-Year Period (1956-2006)

Authors: Hamidreza Joudaki, Yousefali Ziari

Abstract:

The appearance of city and urbanism is one of the important processes which have affected social communities. Being industrialized urbanism developed along with each other in the history. In addition, they have had simple relationship for more than six thousand years, that is, from the appearance of the first cities. In 18th century by coming out of industrial capitalism, progressive development took place in urbanism in the world. In Iran, the city of each region made its decision by itself and the capital of region (downtown) was the only central part and also the regional city without any hierarchy, controlled its realm. However, this method of ruling during these three decays, because of changing in political, social and economic issues that have caused changes in rural and urban relationship. Moreover, it has changed the variety of performance of cities and systematic urban network in Iran. Today, urban system has very vast imbalanced apace and performance. In Isfahan, the trend of urbanism is like the other part of Iran and systematic urban hierarchy is not suitable and normal. This article is a quantitative and analytical. The statistical communities are Isfahan Province cities and the changes in urban network and its hierarchy during the period of fifty years (1956 -2006) has been surveyed. In addition, those data have been analyzed by model of Rank and size and Entropy index. In this article Iran cities and also the factor of entropy of primate city and urban hierarchy of Isfahan Province have been introduced. Urban residents of this Province have been reached from 55 percent to 83% (2006). As we see the analytical data reflects that there is mismatching and imbalance between cities. Because the entropy index was.91 in 1956.And it decreased to.63 in 2006. Isfahan city is the primate city in the whole of these periods. Moreover, the second and the third cities have population gap with regard to the other cities and finally, they do not follow the system of rank-size.

Keywords: urban network, urban hierarchy, primate city, Isfahan province, urbanism, first cities

Procedia PDF Downloads 261
6974 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 71
6973 Trauma: Constructivist Theoretical Framework

Authors: Wendi Dunham, Kimberly Floyd

Abstract:

The constructivist approach to learning is a theoretical orientation that posits that individuals create their own understanding and knowledge of the world through their experiences and interactions. This approach emphasizes that learning is an active process and that individuals are not passive recipients when constructing their understanding of their world. When used concurrently with trauma-informed practices, a constructivist approach can inform the development of a framework for students and teachers that supports their social, emotional, and mental health in addition to enabling academic success. This framework can be applied to teachers and students. When applied to teachers, it can be used to achieve purposeful coping mechanisms through restorative justice and dispositional mindfulness. When applied to students, the framework can implement proactive, student-based practices such as Response to Intervention (RtI) and the 4 Rs to connect resiliency and intervention to academic learning. Using a constructivist, trauma-informed framework can provide students with a greater sense of control and agency over their trauma experiences and impart confidence in achieving school success.

Keywords: trauma, trauma informed practices in education, constructivist theory framework, school responses to trauma, trauma informed supports for teachers, trauma informed strategies for students, restorative justice, mindfulness, response to intervention, the 4 R's, resiliency

Procedia PDF Downloads 53
6972 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery

Authors: Jan-Peter Mund, Christian Kind

Abstract:

In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.

Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data

Procedia PDF Downloads 94
6971 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 117
6970 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City

Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng

Abstract:

Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.

Keywords: human perception, public space quality, deep learning, negative elements, street images

Procedia PDF Downloads 121
6969 Mobile Phones in Saudi Arabian EFL Classrooms

Authors: Srinivasa Rao Idapalapati, Manssour Habbash

Abstract:

As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.

Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model

Procedia PDF Downloads 366
6968 A Comparative Study on the Development of Webquest and Online Treasure Hunt as Instructional Materials in Teaching Motion in One Dimension for Grade VII Students

Authors: Mark Anthony Burdeos, Kara Ella Catoto, Alraine Pauyon, Elesar Malicoban

Abstract:

This study sought to develop, validate, and implement the WebQuest and Online Treasure Hunt as instructional materials in teaching Motion in One Dimension for Grade 7 students and to determine its effects on the students’ conceptual learning, performance and attitude towards Physics. In the development stage, several steps were taken, such as the actual planning and developing the WebQuest and Online Treasure Hunt and making the lesson plan and achievement test. The content and the ICT(Information Communications Technology) effect of the developed instructional materials were evaluated by the Content and ICT experts using adapted evaluation forms. During the implementation, pretest and posttest were administered to determine students’ performance, and pre-attitude and post-attitude tests to investigate students’ attitudes towards Physics before and after the WebQuest and Online Treasure Hunt activity. The developed WebQuest and Online Treasure Hunt passed the validation of Content experts and ICT experts. Students acquired more knowledge on Motion in One Dimension and gained a positive attitude towards Physics after the utilization of WebQuest and Online Treasure Hunt, evidenced significantly higher scores in posttest compared to pretest and higher ratings in post-attitude than pre-attitude. The developed WebQuest and Online Treasure Hunt were proven good in quality and effective materials in teaching Motion in One Dimension and developing a positive attitude towards Physics. However, students performed better in the pretest and posttest and rated higher in the pre-attitude and post-attitude tests in the WebQuest than in the Online Treasure Hunt. This study would provide significant learning experiences to the students that would be useful in building their knowledge, in understanding concepts in a most understandable way, in exercising to use their higher-order thinking skills, and in utilizing their capabilities and abilities to relate Physics topics to real-life situations thereby, students can have in-depth learning about Motion in One Dimension. This study would help teachers to enhance the teaching strategies as the two instructional materials provide interesting, engaging, and innovative teaching-learning experiences for the learners, which are helpful in increasing the level of their motivation and participation in learning Physics. In addition, it would provide information as a reference in using technology in the classroom and to determine which of the two instructional materials, WebQuest and Online Treasure Hunt, is suitable for the teaching-learning process in Motion in One Dimension.

Keywords: ICT integration, motion in one dimension, online treasure hunt, Webquest

Procedia PDF Downloads 180
6967 The Interplay of Factors Affecting Learning of Introductory Programming: A Comparative Study of an Australian and an Indian University

Authors: Ritu Sharma, Haifeng Shen

Abstract:

Teaching introductory programming is a challenging task in tertiary education and various factors are believed to have influence on students’ learning of programming. However, these factors were largely studied independently in a chosen context. This paper aims to investigate whether interrelationships exist among the factors and whether the interrelationships are context-dependent. In this empirical study, two universities were chosen from two continents, which represent different cultures, teaching methodologies, assessment criteria and languages used to teach programming in west and east worlds respectively. The results reveal that some interrelationships are common across the two different contexts, while others appear context-dependent.

Keywords: introductory programming, tertiary education, factors, interrelationships, context, empirical study

Procedia PDF Downloads 365