Search results for: penalized spline regression method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21443

Search results for: penalized spline regression method

17753 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 168
17752 Transformational Leadership Style and Organizational Commitment: An Empirical Assessment

Authors: Ugochukwu D. Abasilim, Aize I. Obayan, Adedayo J. Odukoya, Godwyns Agube, Power A. I. Wogu, Nchekwube Excellence-Oluye

Abstract:

This paper examines the effect of transformational leadership style on organizational commitment among Private University employees in Nigeria. A quantitative methodology was adopted for this study. A structured Multi-factor Leadership Questionnaire (MLQ) developed by Bass and Avolio (1997) and Organizational Commitment Questionnaire (OCQ) developed by Meyer and Allen (1997) were the major instruments used for data collection. Simple linear regression was used for testing the hypothesis. The results indicated that there was no significant positive effect of transformational leadership style on organizational commitment among employees of the Nigerian private university studied. Though the respondents rated their leaders high on transformational leadership style, their organizational commitment rating was average for majority, which implies that employees’ level of commitment could be accounted for by transformational leadership style existing in the institution. This finding is antithetical to the common submission in literature that transformational leadership style has a significant effect on organizational commitment. It was therefore recommended that further studies may want to further explore the reasons for this variance.

Keywords: leadership style, Nigeria, organizational, commitment, transformational leadership

Procedia PDF Downloads 424
17751 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 247
17750 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 175
17749 Impact of Brand Origin on Brand Loyalty: A Case of Personal Care Products in Pakistan

Authors: Aimen Batool Bint-E-Rashid, Syed Muhammad Dawood Ali Shah, Muhammad Usman Farooq, Mahgul Anwar

Abstract:

As the world is progressing, the needs and demands of the consumer market are also changing. Nowadays the trends of consumer purchase decisions are dependent upon multiple factors. This study aims to identify the influential impact of country of origin over the perception and devotion towards daily personal care products specifically in reference to the knowledge and awareness regarding that particular brand in Pakistan. To corroborate this study, a 30-item brand origin questionnaire has been used with 300 purchase decision makers belonging to different age groups. To illustrate this study, a model has been developed based on brand origin, brand awareness and brand loyalty. Correlation and regression analysis have been used to find out the results which conclude the findings on the perspective of Pakistan’s consumer market as that brand origin has a direct relationship with brand loyalty provided that the consumer has a positive brand awareness. Support for the fact that brand origin impacts brand loyalty through brand awareness has been presented in this study.

Keywords: brand awareness, brand loyalty, brand origin, personal care products, P&G, Unilever

Procedia PDF Downloads 241
17748 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 134
17747 Prey-Stage Preference, Functional Response, and Mutual Interference of Amblyseius swirskii Anthias-Henriot on Frankliniella occidentalis Priesner

Authors: Marjan Heidarian Dehkordi, Hossein Allahyari, Bruce Parker, Reza Talaee-Hassanlouei

Abstract:

The Western flower thrips, Frankliniella occidentalis Priesner (Thysanoptera: Thripidae), is a significant pest of many economically important crops. This study evaluated the functional responses, prey-stage preferences and mutual interference of Amblyseius swirskii Anthias-Henriot (Acari: Phytoseiidae) with F. occidentalis as the host under laboratory conditions. The predator species showed no prey stage preference for either prey 1st or 2nd instar. Logistic regression analysis suggested Type II (convex) functional response for the predator species. Consequently, the per capita searching efficiency decreased significantly from 1.2425 to -7.4987 as predator densities increased from 2 to 8. The findings from this study could help select better biological control agents for effective control of F. occidentalis and other pests in vegetable production.

Keywords: biological control, functional responses, mutual interference, prey-stage preferences

Procedia PDF Downloads 325
17746 Comparative Study between Herzberg’s and Maslow’s Theories in Maritime Transport Education

Authors: Nermin Mahmoud Gohar, Aisha Tarek Noour

Abstract:

Learner satisfaction has been a vital field of interest in the literature. Accordingly, the paper will explore the reasons behind individual differences in motivation and satisfaction. This study examines the effect of both; Herzberg’s and Maslow’s theories on learners satisfaction. A self-administered questionnaire was used to collect data from learners who were geographically widely spread around the College of Maritime Transport and Technology (CMTT) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. One hundred and fifty undergraduates responded to a questionnaire survey. Respondents were drawn from two branches in Alexandria and Port Said. The data analysis used was SPSS 22 and AMOS 18. Factor analysis technique was used to find out the dimensions under study verified by Herzberg’s and Maslow’s theories. In addition, regression analysis and structural equation modeling were applied to find the effect of the above-mentioned theories on maritime transport learners’ satisfaction. Concerning the limitation of this study, it used the available number of learners in the CMTT due to the relatively low population in this field.

Keywords: motivation, satisfaction, needs, education, Herzberg’s and Maslow’s theories

Procedia PDF Downloads 436
17745 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 220
17744 Addictive Use Due to Personality: Focused on Big Five Personality Traits and Game Addiction

Authors: Eui Jun Jeong, Hye Rim Lee, Ji Hye Yoo

Abstract:

Recent studies have verified the significant relationship of user personality with Internet use. However, in game studies, little research has emphasized on the effects of personality traits on game addiction. This study examined whether big five personality traits affect game addiction with control of psychological, social, and demographic factors. Specifically, using data from a survey of 789 game users in Korea, we conducted a regression analysis to see the associations of psychological (loneliness/depression), social (activities with family/friends), self-efficacy (game/general), gaming (daily gaming time/perception), demographic (age/gender), and personality traits (extraversion, neuroticism conscientiousness, agreeableness, & openness) with the degree of game addiction. Results showed that neuroticism increase game addiction with no effect of extraversion on the addiction. General self-efficacy negatively affected game addiction, whereas game self-efficacy increased the degree of game addiction. Loneliness enhanced game addiction while depression showed a negative effect on the addiction. Results and implications are discussed.

Keywords: game addiction, big five personality, social activities, self-efficacy, loneliness, depression

Procedia PDF Downloads 569
17743 Students’ Willingness to Use Public Computing Facilities at a Library

Authors: Norbayah Mohd Suki, Norazah Mohd Suki

Abstract:

This study aims to examine relationships between attitude, self-efficacy, and subjective norm with students’ behavioural intention to use public computing facilities at a library. Data was collected from 200 undergraduate students enrolled at a higher learning institution in the Federal Territory of Labuan, Malaysia via a structured questionnaire comprising closed-ended questions. Data was analyzed using multiple regression analysis. The results show that students’ behavioural intention to use public computing facilities at the library is widely affected by subjective norm factor i.e. influence of the support of family members, friends and neighbours. The findings of this study provide a better understanding of factors likely to influence students’ behavioural intention to use public computing facilities at a library. It also offers valuable insights into factors which university librarians need to focus on to improve students’ behavioural intention to actively use public computing facilities at a library for quality information retrieval. Direction for future research is also presented.

Keywords: attitude, self-efficacy, subjective norm, behavioural intention

Procedia PDF Downloads 446
17742 Knowledge Attitude and Practices of COVID-19 among Tamil Nadu Residence

Authors: Shivanand Pawar

Abstract:

In India, a collective range of measurements had been adopted to control the massive spread of the COVID-19 pandemic, but World Health Organization (2022) revealed 525 930 fatalities and 43,847,065 confirmed cases. There are currently 30,857 cases per million people. Lack of knowledge, attitude and practices are the main causes thought to be increased COVID-19. The present study aims to assess the knowledge, attitude, and practice among Tamil Nadu residents. The participants (N=332) were aged 20 to 50 (mean=42.78, & SD=13.98) and were selected using purposive sampling, and data were collected online using knowledge, attitude and practice scale. Data were analyzed using person correlation and multiple regression analysis. The result found that 31.30% had satisfactory knowledge, 68.70% had non-satisfactory knowledge, followed by 45.20% had a positive attitude, 54.80% had a negative attitude, and 34.30% had a good practice, and 65.70% had poor practice towards COVID-19. Correlation results revealed that age has a negative and significant relationship with Knowledge and Practice towards COVID-19. The current study results contribute to the existing literature on knowledge, attitude and practice of COVID-19 to reduce the COVID-19 cases by managing unhealthy knowledge, attitude and practice to control the massive spread of COVID-19.

Keywords: COVID-19, knowledge, practice, attitude, Fisherman community

Procedia PDF Downloads 114
17741 Aerogel Fabrication Via Modified Rapid Supercritical Extraction (RSCE) Process - Needle Valve Pressure Release

Authors: Haibo Zhao, Thomas Andre, Katherine Avery, Alper Kiziltas, Deborah Mielewski

Abstract:

Silica aerogels were fabricated through a modified rapid supercritical extraction (RSCE) process. The silica aerogels were made using a tetramethyl orthosilicate precursor and then placed in a hot press and brought to the supercritical point of the solvent, ethanol. In order to control the pressure release without a pressure controller, a needle valve was used. The resulting aerogels were then characterized for their physical and chemical properties and compared to silica aerogels created using similar methods. The aerogels fabricated using this modified RSCE method were found to have similar properties to those in other papers using the unmodified RSCE method. Silica aerogel infused glass blanket composite, graphene reinforced silica aerogel composite were also successfully fabricated by this new method. The modified RSCE process and system is a prototype for better gas outflow control with a lower cost of equipment setup. Potentially, this process could be evolved to a continuous low-cost high-volume production process to meet automotive requirements.

Keywords: aerogel, automotive, rapid supercritical extraction process, low cost production

Procedia PDF Downloads 184
17740 The Observable Method for the Regularization of Shock-Interface Interactions

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.

Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.

Procedia PDF Downloads 349
17739 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 76
17738 Virtual Player for Learning by Observation to Assist Karate Training

Authors: Kazumoto Tanaka

Abstract:

It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.

Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player

Procedia PDF Downloads 275
17737 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion

Procedia PDF Downloads 197
17736 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
17735 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 372
17734 Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation

Authors: Artiya Sopharak, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy.

Keywords: energy saving, coasting mode, mass rapid transit, quadratic search method

Procedia PDF Downloads 302
17733 Templating Copper on Polymer/DNA Hybrid Nanowires

Authors: Mahdi Almaky, Reda Hassanin, Benjamin Horrocks, Andrew Houlton

Abstract:

DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation.

Keywords: templating, copper nanowires, polymer/DNA hybrid, chemical oxidation method

Procedia PDF Downloads 363
17732 Multiple-Lump-Type Solutions of the 2D Toda Equation

Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique

Abstract:

In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.

Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution

Procedia PDF Downloads 222
17731 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia

Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi

Abstract:

This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.

Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia

Procedia PDF Downloads 529
17730 Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020

Authors: Mustofa Mahmud Al Mamun

Abstract:

Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive.

Keywords: business cycle, consumption multipliers, forecasted government spending, investment multipliers, local projection method, zero lower bound

Procedia PDF Downloads 232
17729 Discrete Element Method Simulation of Crushable Pumice Sand

Authors: Sayed Hessam Bahmani, Rolsndo P. Orense

Abstract:

From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.

Keywords: pumice sand, triaxial compression, simulation, particle breakage

Procedia PDF Downloads 246
17728 The Effect of Mamanet Cachibol League on Psychosomatic Symptoms, Eating Habits, and Social Support among Arab Women: A Mixed Methods Study

Authors: Karin Eines, Riki Tesler

Abstract:

Introduction: The Mamanet Cachibol League (MCL) is a community-based model developed in Israel to promote physical activity (PA) and amateur team sports among women. team sports are not just groups in the context of specific sport activity but also incorporated into a person’s sense of self and become influencing factor on sport-related behavior among the players. While in the non-Arabic sector, sport venues are available for the local authority population, the Arabic sector authorities face limited access sport facilities, with 168 sport venues and authorities with no venues at all. Within the Arab community, women participation in sports has traditionally been limited and, even more so for participation in team sports. Aims: The purpose of the study was to explore attributes of women MCL activity via: (1) assess differences between participants in the MCL and non-participants among Arab women regarding well-being level; (2) to examine among MCL participants the relationship between health maintenance characteristics and the likelihood of participating in the MCL; and (3) Use qualitative approach to shed light over the question why Arabic women participate in MCL and continue their engagement in PA. Methods: An explanatory sequential mixed-method design was employed to gain a deeper understanding of the advantages and motivations among women participating in community-based team sports. A cross-sectional survey was conducted among Israeli Arab women aged 25–59. Demographic characteristics, well-being (SRH and psychosomatic symptoms), eating habits, and social support were analyzed using two-way analyses of covariance and multiple regression models with a sequential entry of the variables. Quantitative results were further explored in qualitative in-depth interviews among 30 of the MCL participants, which shed light on additional reasons for participation in PA. Results: MCL participants reported better self-reported health (p < 0.001) and lower rates of psychosomatic symptoms (p < 0.001) compared to non-participants. Participation in MCL was also related to higher levels of well-being and healthy eating habits. Women who participated also experienced a profound sense of belonging, leading to enhanced social interactions and positivity in their personal and professional lives. They were dedicated to the group and felt empowered by the reciprocal commitment. The group promoted equality, making the women feel valued and respected, resulting in community admiration. Their involvement positively impacted their families, justifying their time commitment.

Keywords: wellbeing, obesity, community based sports, healthy eating habits, arab women

Procedia PDF Downloads 74
17727 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China

Authors: Jiashu Shen

Abstract:

This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.

Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings

Procedia PDF Downloads 182
17726 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 95
17725 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 550
17724 Design and Development of Motorized Placer for Balloon Uterine Stents in Gynecology

Authors: Metehan Mutlu, Meltem Elitas

Abstract:

This study aims to provide an automated method for placing the balloon uterine stents after hysteroscopy adhesiolysis. Currently, there are no automatized tools to place the balloon uterine stent; therefore, surgeons into the endometrial cavity manually fit it. However, it is very hard to pass the balloon stent through the cervical canal, which is roughly 10mm after the surgery. Our method aims to provide an effective and practical way of placing the stent, by automating the procedure through our designed device. Furthermore, our device does the required tasks fast compared to traditional methods, reduces the narcosis time, and decreases the bacterial contamination risks.

Keywords: balloon uterine stent, endometrial cavity, hysteroscopy, motorized-tool

Procedia PDF Downloads 276