Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6132

Search results for: measurement accuracy

2472 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 318
2471 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 142
2470 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: circular arc helical gear, contact problem, optimal center distance, piezoelectric sheet, power generation

Procedia PDF Downloads 169
2469 The Impact of International Financial Reporting Standards (IFRS) Adoption on Performance’s Measure: A Study of UK Companies

Authors: Javad Izadi, Sahar Majioud

Abstract:

This study presents an approach of assessing the choice of performance measures of companies in the United Kingdom after the application of IFRS in 2005. The aim of this study is to investigate the effects of IFRS on the choice of performance evaluation methods for UK companies. We analyse through an econometric model the relationship of the dependent variable, the firm’s performance, which is a nominal variable with the independent ones. Independent variables are split into two main groups: the first one is the group of accounting-based measures: Earning per share, return on assets and return on equities. The second one is the group of market-based measures: market value of property plant and equipment, research and development, sales growth, market to book value, leverage, segment and size of companies. Concerning the regression used, it is a multinomial logistic regression performed on a sample of 130 UK listed companies. Our finding shows after IFRS adoption, and companies give more importance to some variables such as return on equities and sales growth to assess their performance, whereas the return on assets and market to book value ratio does not have as much importance as before IFRS in evaluating the performance of companies. Also, there are some variables that have no impact on the performance measures anymore, such as earning per share. This article finding is empirically important for business in subjects related to IFRS and companies’ performance measurement.

Keywords: performance’s Measure, nominal variable, econometric model, evaluation methods

Procedia PDF Downloads 140
2468 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 55
2467 Direct Measurement of Pressure and Temperature Variations During High-Speed Friction Experiments

Authors: Simon Guerin-Marthe, Marie Violay

Abstract:

Thermal Pressurization (TP) has been proposed as a key mechanism involved in the weakening of faults during dynamic ruptures. Theoretical and numerical studies clearly show how frictional heating can lead to an increase in pore fluid pressure due to the rapid slip along faults occurring during earthquakes. In addition, recent laboratory studies have evidenced local pore pressure or local temperature variation during rotary shear tests, which are consistent with TP theoretical and numerical models. The aim of this study is to complement previous ones by measuring both local pore pressure and local temperature variations in the vicinity of a water-saturated calcite gouge layer subjected to a controlled slip velocity in direct double shear configuration. Laboratory investigation of TP process is crucial in order to understand the conditions at which it is likely to become a dominant mechanism controlling dynamic friction. It is also important in order to understand the timing and magnitude of temperature and pore pressure variations, to help understanding when it is negligible, and how it competes with other rather strengthening-mechanisms such as dilatancy, which can occur during rock failure. Here we present unique direct measurements of temperature and pressure variations during high-speed friction experiments under various load point velocities and show the timing of these variations relatively to the slip event.

Keywords: thermal pressurization, double-shear test, high-speed friction, dilatancy

Procedia PDF Downloads 66
2466 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 186
2465 Towards a Biologically Inspired Supercritical Airfoil Adapted for Gliding Cross-Domain Vehicles

Authors: Hanyue Shen, Jiaying Zhang, Xingwei Kong

Abstract:

Growing research on cross-domain vehicles (CDVs) has addressed the requirement to balance airfoil efficiency in air and water. No existing airfoil is specifically developed to adapt to the large Reynold’s number range CDVs operate in. This research proposes a supercritical airfoil biologically inspired by Atlantic Puffins. The initial airfoil is parameterized with the composite Karman-Trefftz method, optimized with a series of multi-stage gradient descend procedures, and compared with other airfoils with Xfoil. Results from Xfoil are also validated via Fluent and experiment considering curvatures on the designed airfoil might affect the accuracy of Xfoil. The results indicate that while CFD and Xfoil results closely align, Xfoil produces results closest to the experimental value. The bionic airfoil demonstrates superior performance in the range Re = 2·10⁴ to Re = 2·10⁵ compared to other studied airfoils, satisfying design requirements. This airfoil and its future counterparts are probable solutions to be implemented on fixed-wing CDVs desiring to glide in the given working conditions, providing an efficient and structurally simple pathway.

Keywords: fluid dynamics, airfoil design, biomimicry, cross domain vehicle

Procedia PDF Downloads 69
2464 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue

Procedia PDF Downloads 95
2463 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists

Authors: Sefik Can Karakaya, Ibrahim Demir

Abstract:

In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.

Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression

Procedia PDF Downloads 145
2462 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 243
2461 Effects of Surface Insulation of Silicone Rubber Composites in HVDC

Authors: Min-Hae Park, Ju-Na Hwang, Cheong-won Seo, Ji-Ho Kim, Kee-Joe Lim

Abstract:

Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test.

Keywords: composite, silicone rubber, surface insulation, HVDC

Procedia PDF Downloads 408
2460 Body Shape Control of Magnetic Soft Continuum Robots with PID Controller

Authors: M. H. Korayem, N. Sangsefidi

Abstract:

Magnetically guided soft robots have emerged as a promising technology in minimally invasive surgery due to their ability to adapt to complex environments. However, one of the main challenges in this field is damage to the vascular structure caused by unwanted stress on the vessel wall and deformation of the vessel due to improper control of the shape of the robot body during surgery. Therefore, this article proposes an approach for controlling the form of a magnetic, soft, continuous robot body using a PID controller. The magnetic soft continuous robot is modelled using Cosserat theory in static mode and solved numerically. The designed controller adjusts the position of each part of the robot to match the desired shape. The PID controller is considered to minimize the robot's contact with the vessel wall and prevent unwanted vessel deformation. The simulation results confirmed the accuracy of the numerical solution of the static Cosserat model. Also, they showed the effectiveness of the proposed contouring method in achieving the desired shape with a maximum error of about 0.3 millimetres.

Keywords: PID, magnetic soft continuous robot, soft robot shape control, Cosserat theory, minimally invasive surgery

Procedia PDF Downloads 112
2459 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags

Authors: Niddal Imam, Vassilios G. Vassilakis

Abstract:

After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.

Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag

Procedia PDF Downloads 82
2458 Synthesis, Characterization and Antibacterial Activity of Metalloporphyrins: Role of Central Metal Ion

Authors: Belete B. Beyene, Ayenew M. Mihirteu, Misganaw T. Ayana, Amogne W. Yibeltal

Abstract:

Modification of synthetic porphyrins is one of the promising strategies in an attempt to get molecules with desired properties and applications. Here in, we report synthesis, photophysical characterization and antibacterial activity of 5, 10, 15, 20-tetrakis-(4- methoxy carbonyl phenyl) porphyrin M(II); where M = Co, Fe, Ni, Zn. Metallation of the ligand was confirmed by using UV–Vis spectroscopy and ESI-Ms measurement, in which the number of Q bands in absorption spectra of the ligand decreased from four to one or two as a result of metal insertion to the porphyrin core. The antibacterial activity study of the complexes toward two Gram-positive (Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (s. pyogenes)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria by disc diffusion method showed a promising inhibitory activity. The complexes exhibited highest activities at highest concentration and were better than the activity of free base ligand, the salts, and blank solution. This could be explained on the basis of Overton's concept of cell permeability and Tweed's Chelation theory. An increased lipo-solubility enhances the penetration of the complexes into the lipid membrane and interferes with the normal activities of the bacteria. Our study, therefore, showed that the growth inhibitory effect of these metalloporphyrins is generally in order of ZnTPPCOOMe > NiTPPCOOMe > CoTPPCOOMe> FeTPPCOOMe, which may be attributed to the better lipophilicity and binding of the complex with the cellular components.

Keywords: porphyrins, metalloporphyrins, spectral property, antibacterial activity, synthesis

Procedia PDF Downloads 77
2457 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 324
2456 Ceramic Employees’ Occupational Health and Safety Training Expectations in Turkey

Authors: Erol Karaca

Abstract:

This study aims to analyze ceramic employees’ occupational health and safety training expectations. To that general objective, the study tries to examine whether occupational health and safety training expectations of ceramic employees meaningfully differentiate depending on demographic features and professional, social and economic conditions. For this purpose, the research data was collected through “Questionnaire of Occupational Health and Safety Training Expectation” (QSOHSTE) consisting of 25 open and close-ended questions developed by the researcher on the base of the literature review. QSOHSTE was applied to 125 ceramic employees working in Kutahya, Turkey. Data obtained from questionnaires were analyzed via SPSS 21. The findings, obtained from the study, revealed that employees’ agreement level to occupational health and safety training expectation statements is generally high-level. These findings also reveals that employees have various expectations about occupational health and safety training. These expectations are increasing sensitivity towards occupational health and safety training about the prevention of occupational accidents and diseases, contributing occupational health and safety training in establishing healthy and safe working environment, requiring occupational health and safety training before starting work, in case of changing working equipment and new technological applications, necessity of measurement and evaluation after occupational health and safety training. Besides these findings, employees’ agreement level to occupational health and safety training expectation statements also varies in terms of educational level, professional seniority, income level and perception of economic condition.

Keywords: occupational health and safety, occupational training, occupational expectation, professional seniority

Procedia PDF Downloads 450
2455 Deep Learning for Recommender System: Principles, Methods and Evaluation

Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui

Abstract:

Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.

Keywords: big data, decision making, deep learning, recommender system

Procedia PDF Downloads 482
2454 Correlation between Clinical Measurements of Static Foot Posture in Young Adults

Authors: Phornchanok Motantasut, Torkamol Hunsawong, Lugkana Mato, Wanida Donpunha

Abstract:

Identifying abnormal foot posture is important for prescribing appropriate management in patients with lower limb disorders and chronic non-specific low back pain. The normalized navicular height truncated (NNHt) and the foot posture index-6 (FPI-6) have been recommended as the common, simple, valid, and reliable static measures for clinical application. The NNHt is a single plane measure while the FPI-6 is a triple plane measure. At present, there is inadequate information about the correlation between the NNHt and the FPI-6 for categorizing foot posture that leads to a difficulty of choosing the appropriate assessment. Therefore, the present study aimed to determine the correlation between the NNHt and the FPI-6 measures in adult participants with asymptomatic feet. Methods: A cross-sectional descriptive study was conducted in 47 asymptomatic individuals (23 males and 24 females) aged 28.89 ± 7.67 years with body mass index 21.73 ± 1.76 kg/m². The right foot was measured twice by the experienced rater using the NNHt and the FPI-6. A sequence of the measures was randomly arranged for each participant with a 10-minute rest between the tests. The Pearson’s correlation coefficient (r) was used to determine the relationship between the measures. Results: The mean NNHt score was 0.23 ± 0.04 (ranged from 0.15 to 0.36) and the mean FPI-6 score was 4.42 ± 4.36 (ranged from -6 to +11). The Pearson’s correlation coefficient among the NNHt score and the FPI-6 score was -0.872 (p < 0.01). Conclusion: The present finding demonstrates the strong correlation between the NNHt and FPI-6 in adult feet and implies that both measures could be substituted for each other in identifying foot posture.

Keywords: foot posture index, foot type, measurement of foot posture, navicular height

Procedia PDF Downloads 140
2453 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration

Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate

Abstract:

Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.

Keywords: gears, whine noise, manufacturing variability, mount vibration variability

Procedia PDF Downloads 151
2452 Beyond the Effect on Children: Investigation on the Longitudinal Effect of Parental Perfectionism on Child Maltreatment

Authors: Alice Schittek, Isabelle Roskam, Moira Mikolajczak

Abstract:

Background: Perfectionistic strivings (PS) and perfectionistic concerns (PC) are associated with an increase in parental burnout (PB), and PB causally increases violence towards the offspring. Objective: To our best knowledge, no study has ever investigated whether perfectionism (PS and PC) predicts violence towards the offspring and whether PB could explain this link. We hypothesized that an increase in PS and PC would lead to an increase in violence via an increase in PB. Method: 228 participants responded to an online survey, with three measurement occasions spaced two months apart. Results: Contrary to expectations, cross-lagged path models revealed that violence towards the offspring prospectively predicts an increase in PS and PC. Mediation models showed that PB is not a significant mediator. The results of all models did not change when controlling for social desirability. Conclusion: The present study shows that violence towards the offspring increases the risk of PS and PC in parents, which highlights the importance of understanding the effect of child maltreatment on the whole family system and not just on children. Results are discussed in light of the feeling of guilt experienced by parents. Considering the insignificant mediation effect, PB research should slowly shift towards more (quasi) causal designs, allowing to identify which significant correlations translate into causal effects. Implications: Clinicians should focus on preventing child maltreatment as well as treating parental perfectionism. Researchers should unravel the effects of child maltreatment on the family system.

Keywords: maltreatment, parental burnout, perfectionistic strivings, perfectionistic concerns, perfectionism, violence

Procedia PDF Downloads 75
2451 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 66
2450 Improving the Quality of Staff Performance with a Talent-Driven Approach: Case Study of SAIPA Automotive Manufacturing Company in Iran

Authors: Abdolmajid Mosleh, Afzal Ghasimi

Abstract:

The purpose of this research is to investigate and identify effective factors that can improve the quality of personal performance in industrial companies. In the present study, it was assumed that the hidden variables of talent management could be explained by an important part of the variance in improving the quality of employee performance. This research is targeted in terms of applied research. The statistical population of the research is SAIPA automobile company with a number (N=10291); the sample of 380 people was selected based on the Cochran formula in a random sampling method among employed people. The measurement tool in this research was a questionnaire of 33 items with a control questionnaire that included two talent management departments (talent identification and talent exploitation) and improvements in staff performance (enhancement of technical and specialized capabilities, managerial capability, organizational interaction, and communication). The reliability of the internal consistency method was confirmed by the Cronbach's alpha coefficient and the two half-ways. In order to determine the validity of the questionnaire structure, confirmatory factor analysis was used. Based on the results of the data analysis, the effect of talent management on improving the quality of staff performance was confirmed. Based on the results of inferential statistics and structural equations of the proposed model, it had high fitness.

Keywords: employee performance, talent management, performance improvement, SAIPA automobile manufacturing company

Procedia PDF Downloads 92
2449 Math Anxiety Effects on Complex Addition: An ERP Study

Authors: María Isabel Núñez-Peña, Macarena Suárez Pellicioni

Abstract:

In the present study, we used event-related potentials (ERP) to address the question of whether high (HMA) and low math-anxious (LMA) individuals differ on a complex addition verification task, which involved both carrying and non-carrying additions. ERPs were recorded while seventeen HMA and seventeen LMA individuals performed the verification task. Groups did not differ in trait anxiety or gender distribution. Participants were presented with two-digit additions and were asked to decide whether the proposed solution was correct or incorrect. Behavioral data showed a significant Carrying x Proposed solution x Group interaction for accuracy, showing that carrying additions were more error prone than non-carrying ones for both groups, although the difference non-carrying minus carrying was larger for the HMA group. As for ERPs, a P2 component larger in HMA individuals than in their LMA peers was found both for carrying and non-carrying additions. The P2 was followed by a sustained negative slow wave at parietal positions. Because the negative slow waves are thought to reflect the updating of working memory, these results give support to the relationship among working memory, math performance and math anxiety.

Keywords: math anxiety, carrying, working memory, P2

Procedia PDF Downloads 449
2448 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression

Procedia PDF Downloads 227
2447 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 317
2446 Perceived Effect of Physical Exercise on Healthy Well-Being of Pregnant Women in Imo State

Authors: Roseline Chizoba Onuoha, Rose Ngozi Uzoka

Abstract:

This study aimed at investigating perceived effect of physical exercise on healthy well-being of pregnant mothers in Imo state. The study was guided by three research questions and three null hypotheses tested at 0.05 level of significance. The study was a quasi-experimental non-equivalent control group design involving pre and post tests. A sample of 92 pregnant women drawn from a total population of 922 registered pregnant women in ten randomly selected health centers in Imo State through multistage sampling technique was used. A 41 item structured instrument titled Physical Exercise Pregnancy Test (PEPT) was used for the study. The PEPT was validated by three experts from measurement and evaluation, educational psychology and health education. Crombach Alpha method was used to determine the reliability of Physical Exercise Pregnancy Test (PEPT) and reliability index of 0.82 was obtained. Mean and standard deviation were used to answer the research questions; while Analysis of Covariance (ANCOVA) was used in analyzing the hypotheses. Findings of the study revealed that physical exercise affects physical, social and emotional wellbeing scores of pregnant women. The study also indicated that intervention using physical exercise significantly enhanced healthy well-being scores of pregnant mothers who were exposed to physical exercise than those who received conventional health talks; Location has no significant interaction effect on the mean well-being scores of pregnant women via PEPT. Among recommendations made were that pregnant women should participate in physical exercise.

Keywords: educational psychology, Imo state, Physical exercise, pregnant women

Procedia PDF Downloads 139
2445 Evaluation of a Mindfulness and Self-Care-Based Intervention for Teachers to Enhance Mental Health

Authors: T. Noichl, M. Cramer, G. E. Dlugosch, I. Hosenfeld

Abstract:

Teachers are exposed to a variety of stresses in their work context. These can have a negative impact on physical and psychological well-being. The online training ‘Better Living! Self-care for teachers’ is based on the training ‘Better Living! Self-care for mental health professionals’, which has been proven to be effective over a period of 3 years. The training for teachers is being evaluated for its effectiveness between October 2021 and March 2023 in a study funded by the German Federal Ministry of Education and Research. The aim of the training is to promote self-care and mindfulness among participants and thereby to foster well-being. The concept of self-care was already mentioned in antiquity and was also named as an imperative by philosophers such as Socrates and Epictetus. In the absence of a universal understanding of self-care today, the following definition was developed within the research group: Self-care is 1) facing oneself in a loving and appreciative way, 2) taking one's own needs seriously, and 3) actively contributing to one's own well-being. The study is designed as a randomized wait-control group repeated-measures design with 4 (treatment group) resp. 6 (wait-control group) measurement points. Central dependent variables are self-care, mindfulness, stress, and well-being. To assess the long-term effectiveness of training participation, these constructs are surveyed at the beginning and the end of the training as well as five weeks and one year later. Based on the results of the evaluation with mental health professionals, it is expected that participation will lead to an increase in subjective well-being, self-care, and mindfulness. The first results of the evaluation study are presented and discussed with regard to the effectiveness of the training among teachers.

Keywords: longitudinal intervention study, mindfulness, self-care, teachers’ mental health, well-being

Procedia PDF Downloads 103
2444 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 304
2443 Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device

Authors: Pattarachaya Preechakasedkit, Kota Osada, Koji Suzuki, Daniel Citterio, Orawon Chailapakul

Abstract:

A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement.

Keywords: thyroid stimulating hormone, paper-based lateral flow, hypothyroidism, hyperthyroidism

Procedia PDF Downloads 369