Search results for: decision experts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5075

Search results for: decision experts

1415 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 365
1414 COVID Prevention and Working Environmental Risk Prevention and Buisness Continuety among the Sme’s in Selected Districts in Sri Lanka

Authors: Champika Amarasinghe

Abstract:

Introduction: Covid 19 pandemic was badly hit to the Sri Lankan economy during the year 2021. More than 65% of the Sri Lankan work force is engaged with small and medium scale businesses which no doubt that they had to struggle for their survival and business continuity during the pandemic. Objective: To assess the association of adherence to the new norms during the Covid 19 pandemic and maintenance of healthy working environmental conditions for business continuity. A cross sectional study was carried out to assess the OSH status and adequacy of Covid 19 preventive strategies among the 200 SME’S in selected two districts in Sri Lanka. These two districts were selected considering the highest availability of SME’s. Sample size was calculated, and probability propionate to size was used to select the SME’s which were registered with the small and medium scale development authority. An interviewer administrated questionnaire was used to collect the data, and OSH risk assessment was carried out by a team of experts to assess the OSH status in these industries. Results: According to the findings, more than 90% of the employees in these industries had a moderate awareness related to COVID 19 disease and preventive strategies such as the importance of Mask use, hand sainting practices, and distance maintenance, but the only forty percent of them were adhered to implementation of these practices. Furthermore, only thirty five percent of the employees and employers in these SME’s new the reasons behind the new norms, which may be the reason for reluctance to implement these strategies and reluctance to adhering to the new norms in this sector. The OSH risk assessment findings revealed that the working environmental organization while maintaining the distance between two employees was poor due to the inadequacy of space in these entities. More than fifty five percent of the SME’s had proper ventilation and lighting facilities. More than eighty five percent of these SME’s had poor electrical safety measures. Furthermore, eighty two percent of them had not maintained fire safety measures. Eighty five percent of them were exposed to heigh noise levels and chemicals where they were not using any personal protectives nor any other engineering controls were not imposed. Floor conditions were poor, and they were not maintaining the occupational accident nor occupational disease diseases. Conclusions: Based on the findings, proper awareness sessions were carried out by NIOSH. Six physical training sessions and continues online trainings were carried out to overcome these issues, which made a drastic change in their working environments and ended up with hundred percent implementation of the Covid 19 preventive strategies, which intern improved the worker participation in the businesses. Reduced absentees and improved business opportunities, and continued their businesses without any interruption during the third episode of Covid 19 in Sri Lanka.

Keywords: working environment, Covid 19, occupational diseases, occupational accidents

Procedia PDF Downloads 88
1413 The Role of Interest Groups in Foreign Policy: Assessing the Influence of the 'Pro-Jakarta Lobby' in Australia and Indonesia's Bilateral Relations

Authors: Bec Strating

Abstract:

This paper examines the ways that domestic politics and pressure–generated through lobbying, public diplomacy campaigns and other tools of soft power-contributes to the formation of short-term and long-term national interests, priorities and strategies of states in their international relations. It primarily addresses the conceptual problems regarding the kinds of influence that lobby groups wield in foreign policy and how this influence might be assessed. Scholarly attention has been paid to influential foreign policy lobbies and interest groups, particularly in the areas of US foreign policy. Less attention has been paid to how lobby groups might influence the foreign policy of a middle power such as Australia. This paper examines some of the methodological complexities in developing and conducting a research project that can measure the nature and influence of lobbies on foreign affairs priorities and activities. This paper will use Australian foreign policy in the context of its historical bilateral relationship with Indonesia as a case study for considering the broader issues of domestic influences on foreign policy. Specifically, this paper will use the so-called ‘pro-Jakarta lobby’ as an example of an interest group. The term ‘pro-Jakarta lobby’ is used in media commentary and scholarship to describe an amorphous collection of individuals who have sought to influence Australian foreign policy in favour of Indonesia. The term was originally applied to a group of Indonesian experts at the Australian National University in the 1980s but expanded to include journalists, think tanks and key diplomats. The concept of the ‘pro-Jakarta lobby’ was developed largely through criticisms of Australia’s support for Indonesia’s sovereignty of East Timor and West Papua. Pro-Independence supporters were integral for creating the ‘lobby’ in their rhetoric and criticisms about the influence on Australian foreign policy. In these critical narratives, the ‘pro-Jakarta lobby’ supported a realist approach to relations with Indonesia during the years of President Suharto’s regime, which saw appeasement of Indonesia as paramount to values of democracy and human rights. The lobby was viewed as integral in embedding a form of ‘foreign policy exceptionalism’ towards Indonesia in Australian policy-making circles. However, little critical and scholarly attention has been paid to nature, aims, strategies and activities of the ‘pro-Jakarta lobby.' This paper engages with methodological issues of foreign policy analysis: what was the ‘pro-Jakarta lobby’? Why was it considered more successful than other activist groups in shaping policy? And how can its influence on Australia’s approach to Indonesia be tested in relation to other contingent factors shaping policy? In addressing these questions, this case study will assist in addressing a broader scholarly concern about the capacities of collectives or individuals in shaping and directing the foreign policies of states.

Keywords: foreign policy, interests groups, Australia, Indonesia

Procedia PDF Downloads 343
1412 Analyzing Healthy Eating Among Adolescent Teens Using the Socioecological Model

Authors: Kaavya Chandrasekar

Abstract:

Healthy eating is essential to maintain good health and stable mental status regardless of age. WHO describes that a healthy diet consists of incorporating more fruits and vegetables and reducing the consumption of sugary and salty foods into a regularly scheduled healthy diet. Although this attitude is rather uncommon among all age groups, it is notably uncommon among the teens being a very vulnerable state in a man’s life. Faulty dietary habits, in the long run, interfere with health, leading to obesity, cardiovascular diseases, and mental instability. This study collates a discussion on the barriers prevailing among adolescents, to inculcate healthy eating practices by means of the socioecological model. The studies consisted of teens aged 13 to 19 years from schools and colleges of both sexes. The socio-ecological model emphasizes the interplay and interconnectedness of elements at all levels of health behavior, acknowledging that the majority of public health issues are just too complicated to be solved from a single-level perspective. As a result, it necessitates that people are not considered in isolation from bigger social groups. According to the studies retrieved from ten articles studies conducted globally, more than five articles suggest that socioeconomic class, lack of adult supervision and easy access to fast food stores and schools affect their decision of healthy eating. Awareness via personalized intervention has been tried and found successful. Future research is still needed to address various dimensions of the issue.

Keywords: socio ecological model, healthy eating, adolescents, fast food consumption, interventions.

Procedia PDF Downloads 26
1411 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 46
1410 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services

Authors: Roberto Feltrero, Sara Osuna-Acedo

Abstract:

Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.

Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation

Procedia PDF Downloads 90
1409 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 75
1408 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 39
1407 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 114
1406 Integrated Imaging Management System: An Approach in the Collaborative Coastal Resource Management of Bagac, Bataan

Authors: Aljon Pangan

Abstract:

The Philippines being an archipelagic country, is surrounded by coastlines (36,289 km), coastal waters (226,000 km²), oceanic waters (1.93 million km²) and territorial waters (2.2 million km²). Studies show that the Philippine coastal ecosystems are the most productive and biologically diverse in the world, however, plagued by degradation problems due to over-exploitation and illegal activities. The existence of coastal degradation issues in the country led to the emergence of Coastal Resource Management (CRM) as an approach to both national and local government in providing solutions for sustainable coastal resource utilization. CRM applies the idea of planning, implementing and monitoring through the lens of collaborative governance. It utilizes collective action and decision-making to achieve sustainable use of coastal resources. The Municipality of Bagac in Bataan is one of the coastal municipalities in the country who crafts its own CRM Program as a solution to coastal resource degradation and problems. Information and Communications Technology (ICT), particularly Integrated Imaging Management System (IIMS) is one approach that can be applied in the formula of collaborative governance which entails the Government, Private Sector, and Civil Society. IIMS can help policymakers, managers, and citizens in managing coastal resources through analyzed spatial data describing the physical, biological, and socioeconomic characteristics of the coastal areas. Moreover, this study will apply the qualitative approach in deciphering possible impacts of the application of IIMS in the Coastal Resource Management policy making and implementation of the Municipality of Bagac.

Keywords: coastal resource management, collaborative governance, integrated imaging management system, information and communication technology

Procedia PDF Downloads 397
1405 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions

Authors: Ali Abbas

Abstract:

This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.

Keywords: ethical decision making, prediction, scandals, organizational strategies

Procedia PDF Downloads 125
1404 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 153
1403 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 143
1402 The Impact of Unemployment on the Sexual Behaviour of Male Youth in Quzini, Eastern Cape, South Africa: A Qualitative Study

Authors: Jabulani Gilford Kheswa

Abstract:

This paper reports on the effects of unemployment on the sexual behaviour of male youth. Drawing from Jahoda’s deprivation theory, unemployed male youth is prone to psychological distress and as a result, they resort to drugs and alcohol abuse as a way to cope with discrimination. Studies showed that such youth is more inclined to be sexually aggressive and very often engage in criminal activities and risky sexual behaviour such as multiple sexual partners and unprotected sex to cover their feelings of emotional insecurities and negative self-concept. The purpose of the study was to investigate the impact of unemployment on the sexual behaviour of Xhosa- speaking male youth, aged 19-35, from Quzini Location, Eastern Cape, South Africa. A qualitative, explorative, descriptive and contextual design was followed using phenomenological method. The purposively sampled comprised fifteen unemployed males who gave their informed consent to be interviewed. For trustworthiness of the study, the researcher met the Lincoln and Guba’s principles, namely; credibility, dependability confirmability and transferability. The following themes were identified, namely; patriarchy, gender- based violence, drug abuse, stigma and discrimination, criminal activities, depression and low- self-esteem. Based on the findings, the recommendations are that the government and private sectors should create jobs aimed at reducing unemployment for unemployed youth and psycho-educational programmes that will equip them in the areas of sexual values and attitudes, communication and decision-making skills.

Keywords: discrimination, male-youth, sex, unemployment

Procedia PDF Downloads 273
1401 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 238
1400 US-Iran Hostage Crisis by the Metaphor of Argo in the Light of Post-Modernist Post-Colonial and Realist Theories

Authors: Hatice Idil Gorgen

Abstract:

This paper argues that discourses and textuality which is literary tool of Western ethnocentrism create aggressive foreign policy against the West by Non-West countries. Quasi-colonial experiences create an inferiority complex on officially or not colonized areas by reconstructing their identity. This reconstructed identity leads revolution and resistance movement to feel secure themselves as a psychological defense against colonial powers. Knowledge learned by successful implementation of discourses grants right to has power for authority, in addition to serving as a tool to reinforce power of authority by its cognitive traits on foreign policy decision making. The combination of these points contributes to shaping and then make predictable state policies. In the methodology of paper, secondary data was firstly reviewed through university library using a range of sources such as academic abstract, OPAC system, bibliography databases and internet search engines. The film of Argo was used to strengthen and materialize theoretical explanations as a metaphor. This paper aims to highlight the cumulative effects on the construction of the identity throughout embedded discourses by textuality. To demonstrate it by a metaphor, Argo will be used as a primary source for good story-telling about history. U.S-Iran hostage crisis is mainly applied by aiming to see foundations Iran’s behavior in the context of its revolutionary identity and major influences of actions of U.S on it.

Keywords: discourse, post colonialism, post modernism, objectivity

Procedia PDF Downloads 160
1399 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 111
1398 Proposing an Improved Managerial-Based Business Process Framework

Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi

Abstract:

Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.

Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN

Procedia PDF Downloads 453
1397 A Cross-Cultural Validation of the Simple Measure of Impact of Lupus Erythematosus in Youngsters (Smiley) among Filipino Pediatric Lupus Patients

Authors: Jemely M. Punzalan, Christine B. Bernal, Beatrice B. Canonigo, Maria Rosario F. Cabansag, Dennis S. Flores, Paul Joseph T. Galutira, Remedios D. Chan

Abstract:

Background: Systemic lupus erythematosus (SLE) is one of the most common autoimmune disorders predominates in women of childbearing age. Simple Measure of Impact of Lupus Erythematosus in Youngsters (SMILEY) is the only health specific quality of life tool for pediatric SLE, which has been translated to different languages except in Filipino. Objective: The primary objective of this study was to develop a Filipino translation of the SMILEY and to examine the validity and reliability of this translation. Methodology: The SMILEY was translated into Filipino by a bilingual individual and back-translated by another bilingual individual blinded from the original English version. The translation was evaluated for content validity by a panel of experts and subjected to pilot testing. The pilot-tested translation was used in the validity and reliability testing proper. The SMILEY, together with the previously validated PEDSQL 4.0 Generic Core Scale was administered to lupus pediatric patients and their parent at two separate occasions: a baseline and a re-test seven to fourteen days apart. Tests for convergent validity, internal consistency, and test-retest reliability were performed. Results: A total of fifty children and their parent were recruited. The mean age was 15.38±2.62 years (range 8-18 years), mean education at high school level. The mean duration of SLE was 28 months (range 1-81 months). Subjects found the questionnaires to be relevant, easy to understand and answer. The validity of the SMILEY was demonstrated in terms of content validity, convergent validity, internal consistency, and test-retest reliability. Age, socioeconomic status and educational attainment did not show a significant effect on the scores. The difference between scores of child and parent report was showed to be significant with SMILEY total (p=0.0214), effect on social life (p=0.0000), and PEDSQL physical function (p=0.0460). Child reports showed higher scores for the following domains compared to their parent. Conclusion: SMILEY is a brief, easy to understand, valid and reliable tool for assessing pediatric SLE specific HRQOL. It will be useful in providing better care, understanding and may offer critical information regarding the effect of SLE in the quality of life of our pediatric lupus patients. It will help physician understands the needs of their patient not only on treatment of the specific disease but as well as the impact of the treatment on their daily lives.

Keywords: systemic lupus erythematosus, pediatrics, quality of life, Simple Measure of Impact of Lupus Erythematosus in Youngsters (SMILEY)

Procedia PDF Downloads 443
1396 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 13
1395 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 349
1394 Pull String to Stop: Public Utility Vehicle Modernization Program

Authors: Frederick Kobe O. Obar, Preity B. Quinzon, Trisha B. Tumbokon, Mario Joshua D. Marron, Kenichi Katsuo Kichiro A. Rimorin

Abstract:

The Public Utility Vehicle Modernization Program (PUVMP) is a program meant to reform the current state of the Philippines’ public transportation sector. This study determined the impact of the Public Utility Vehicle Modernization Program on San Fernando City, La Union's jeepney drivers, interviewing six individuals, three with traditional vehicles and three with modernized units. This study used a descriptive qualitative research design and employed purposive sampling to select the six participants suited for the study, who were then subjected to a semi-structured face-to-face interview. The gathered data was then analyzed through thematic analysis. The findings highlighted evidence that the jeepney drivers experienced abrupt and prevailing changes in their routine and in their everyday work. This study concludes that while the sentiment of the program was appreciated, it has changed the environment for jeepney drivers drastically, provoking many reactions. These changes have, of course, shifted the daily lives of the jeepney drivers significantly, but through adaptability, they found ways. Recommendations include flexible compliance policies, educational initiatives, and support for drivers, providing valuable insights for informed decision-making in the ongoing transportation modernization discussion. This study concluded that while the drivers are not opposed to reform, they are not entirely in approval of the current effects of the program as it is being implemented in their local area.

Keywords: transport reform, transport modernization, public transport, jeepney drivers, PUVMP, urban planning, public utility vehicles

Procedia PDF Downloads 68
1393 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 156
1392 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 291
1391 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 352
1390 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 100
1389 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube

Authors: Yue Hao

Abstract:

COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.

Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis

Procedia PDF Downloads 79
1388 Stakeholders' Engagement Process in the OBSERVE Project

Authors: Elisa Silva, Rui Lança, Fátima Farinha, Miguel José Oliveira, Manuel Duarte Pinheiro, Cátia Miguel

Abstract:

Tourism is one of the global engines of development. With good planning and management, it can be a positive force, bringing benefits to touristic destinations around the world. However, without constrains, boundaries well established and constant survey, tourism can be very harmful and induce destination’s degradation. In the interest of the tourism sector and the community it is important to develop the destination maintaining its sustainability. The OBSERVE project is an instrument for monitoring and evaluating the sustainability of the region of Algarve. Its main priority is to provide environmental, economic, social-cultural and institutional indicators to support the decision-making process towards a sustainable growth. In the pursuit of the objectives, it is being developed a digital platform where the significant indicators will be continuously updated. It is known that the successful development of a touristic region depends from the careful planning with the commitment of central and regional government, industry, services and community stakeholders. Understand the different perspectives of stakeholders is essential to engage them in the development planning. However, actual stakeholders’ engagement process is complex and not easy to accomplish. To create a consistent system of indicators designed to monitor and evaluate the sustainability performance of a touristic region it is necessary to access the local data and the consideration of the full range of values and uncertainties. This paper presents the OBSERVE project and describes the stakeholders´ engagement process highlighting the contributions, ambitions and constraints.

Keywords: sustainable tourism, stakeholders' engagement, OBSERVE project, Algarve region

Procedia PDF Downloads 168
1387 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz

Abstract:

Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.

Keywords: Product Design, Product Development, Prototypes, Step

Procedia PDF Downloads 117
1386 The Use of Platelet-rich Plasma in the Treatment of Diabetic Foot Ulcers: A Scoping Review

Authors: Kiran Sharma, Viktor Kunder, Zerha Rizvi, Ricardo Soubelet

Abstract:

Platelet rich plasma (PRP) has been recognized as a method of treatment in medicine since the 1980s. It primarily functions by releasing cytokines and growth factors that promote wound healing; these growth promoting factors released by PRP enact new processes such as angiogenesis, collagen deposition, and tissue formation that can change wound healing outcomes. Many studies recognize that PRP aids in chronic wound healing, which is advantageous for patients who suffer from chronic diabetic foot ulcers (DFUs). This scoping review aims to examine literature to identify the efficacy of PRP use in the healing of DFUs. Following PRISMA guidelines, we searched randomized-controlled trials involving PRP use in diabetic patients with foot ulcers using PubMed, Medline, CINAHL Complete, and Cochrane Database of Systematic Reviews. We restricted the search to articles published during 2005-2022, full texts in the English language, articles involving patients aged 19 years or older, articles that used PRP on specifically DFUs, articles that included a control group, articles on human subjects. The initial search yielded 119 articles after removing duplicates. Final analysis for relevance yielded 8 articles. In all cases except one, the PRP group showed either faster healing, more complete healing, or a larger percentage of healed participants. There were no situations in the included studies where the control group had a higher rate of healing or decreased wound size as compared to a group with isolated PRP-only use. Only one study did not show conclusive evidence that PRP caused accelerated healing in DFUs, and this study did not have an isolated PRP variable group. Application styles of PRP for treatment were shown to influence the level of healing in patients, with injected PRP appearing to achieve the best results as compared to topical PRP application. However, this was not conclusive due to the involvement of several other variables. Two studies additionally found PRP to be useful in healing refractory DFUs, and one study found that PRP use in patients with additional comorbidities was still more effective in healing DFUs than the standard control groups. The findings of this review suggest that PRP is a useful tool in reducing healing times and improving rates of complete wound healing in DFUs. There is room for further research in the application styles of PRP before conclusive statements can be made on the efficacy of injected versus topical PRP healing based on the findings in this study. The results of this review provide a baseline for further research in PRP use in diabetic patients and can be used by both physicians and public health experts to guide future treatment options for DFUs.

Keywords: diabetic foot ulcer, DFU, platelet rich plasma, PRP

Procedia PDF Downloads 75