Search results for: “onion husk” algorithm
154 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 388153 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 244152 Governance in the Age of Artificial intelligence and E- Government
Authors: Mernoosh Abouzari, Shahrokh Sahraei
Abstract:
Electronic government is a way for governments to use new technology that provides people with the necessary facilities for proper access to government information and services, improving the quality of services and providing broad opportunities to participate in democratic processes and institutions. That leads to providing the possibility of easy use of information technology in order to distribute government services to the customer without holidays, which increases people's satisfaction and participation in political and economic activities. The expansion of e-government services and its movement towards intelligentization has the ability to re-establish the relationship between the government and citizens and the elements and components of the government. Electronic government is the result of the use of information and communication technology (ICT), which by implementing it at the government level, in terms of the efficiency and effectiveness of government systems and the way of providing services, tremendous commercial changes are created, which brings people's satisfaction at the wide level will follow. The main level of electronic government services has become objectified today with the presence of artificial intelligence systems, which recent advances in artificial intelligence represent a revolution in the use of machines to support predictive decision-making and Classification of data. With the use of deep learning tools, artificial intelligence can mean a significant improvement in the delivery of services to citizens and uplift the work of public service professionals while also inspiring a new generation of technocrats to enter government. This smart revolution may put aside some functions of the government, change its components, and concepts such as governance, policymaking or democracy will change in front of artificial intelligence technology, and the top-down position in governance may face serious changes, and If governments delay in using artificial intelligence, the balance of power will change and private companies will monopolize everything with their pioneering in this field, and the world order will also depend on rich multinational companies and in fact, Algorithmic systems will become the ruling systems of the world. It can be said that currently, the revolution in information technology and biotechnology has been started by engineers, large economic companies, and scientists who are rarely aware of the political complexities of their decisions and certainly do not represent anyone. Therefore, it seems that if liberalism, nationalism, or any other religion wants to organize the world of 2050, it should not only rationalize the concept of artificial intelligence and complex data algorithm but also mix them in a new and meaningful narrative. Therefore, the changes caused by artificial intelligence in the political and economic order will lead to a major change in the way all countries deal with the phenomenon of digital globalization. In this paper, while debating the role and performance of e-government, we will discuss the efficiency and application of artificial intelligence in e-government, and we will consider the developments resulting from it in the new world and the concepts of governance.Keywords: electronic government, artificial intelligence, information and communication technology., system
Procedia PDF Downloads 94151 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects
Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang
Abstract:
As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.Keywords: 4D, 5D, 6D, active BIM
Procedia PDF Downloads 276150 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 105149 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization
Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford
Abstract:
The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator
Procedia PDF Downloads 131148 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair
Authors: Anamika Paul, Sudipto Sarkar
Abstract:
The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic
Procedia PDF Downloads 112147 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer
Authors: Ke Zhang, Yongli Zhu
Abstract:
Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm
Procedia PDF Downloads 263146 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions
Authors: Mikhail O. Eremin
Abstract:
Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault
Procedia PDF Downloads 140145 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 302144 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth
Authors: Kunihisa Kakumoto
Abstract:
“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.Keywords: solar community, sustainability, prototype, algorithmic simulation
Procedia PDF Downloads 61143 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method
Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren
Abstract:
In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.Keywords: floating body, fluid structure interaction, MPS, particle method, waves
Procedia PDF Downloads 75142 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK
Authors: Sneha Shankar, Orlando Buendia, Will Evans
Abstract:
Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis
Procedia PDF Downloads 167141 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 227140 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 129139 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations
Procedia PDF Downloads 187138 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization
Authors: Aitor Bilbao, Dragos Axinte, John Billingham
Abstract:
The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation
Procedia PDF Downloads 275137 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 124136 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 224135 Development of a Bus Information Web System
Authors: Chiyoung Kim, Jaegeol Yim
Abstract:
Bus service is often either main or the only public transportation available in cities. In metropolitan areas, both subways and buses are available whereas in the medium sized cities buses are usually the only type of public transportation available. Bus Information Systems (BIS) provide current locations of running buses, efficient routes to travel from one place to another, points of interests around a given bus stop, a series of bus stops consisting of a given bus route, and so on to users. Thanks to BIS, people do not have to waste time at a bus stop waiting for a bus because BIS provides exact information on bus arrival times at a given bus stop. Therefore, BIS does a lot to promote the use of buses contributing to pollution reduction and saving natural resources. BIS implementation costs a huge amount of budget as it requires a lot of special equipment such as road side equipment, automatic vehicle identification and location systems, trunked radio systems, and so on. Consequently, medium and small sized cities with a low budget cannot afford to install BIS even though people in these cities need BIS service more desperately than people in metropolitan areas. It is possible to provide BIS service at virtually no cost under the assumption that everybody carries a smartphone and there is at least one person with a smartphone in a running bus who is willing to reveal his/her location details while he/she is sitting in a bus. This assumption is usually true in the real world. The smartphone penetration rate is greater than 100% in the developed countries and there is no reason for a bus driver to refuse to reveal his/her location details while driving. We have developed a mobile app that periodically reads values of sensors including GPS and sends GPS data to the server when the bus stops or when the elapsed time from the last send attempt is greater than a threshold. This app detects the bus stop state by investigating the sensor values. The server that receives GPS data from this app has also been developed. Under the assumption that the current locations of all running buses collected by the mobile app are recorded in a database, we have also developed a web site that provides all kinds of information that most BISs provide to users through the Internet. The development environment is: OS: Windows 7 64bit, IDE: Eclipse Luna 4.4.1, Spring IDE 3.7.0, Database: MySQL 5.1.7, Web Server: Apache Tomcat 7.0, Programming Language: Java 1.7.0_79. Given a start and a destination bus stop, it finds a shortest path from the start to the destination using the Dijkstra algorithm. Then, it finds a convenient route considering number of transits. For the user interface, we use the Google map. Template classes that are used by the Controller, DAO, Service and Utils classes include BUS, BusStop, BusListInfo, BusStopOrder, RouteResult, WalkingDist, Location, and so on. We are now integrating the mobile app system and the web app system.Keywords: bus information system, GPS, mobile app, web site
Procedia PDF Downloads 216134 Railway Ballast Volumes Automated Estimation Based on LiDAR Data
Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert
Abstract:
The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point
Procedia PDF Downloads 109133 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 77132 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19
Authors: Parisa Mansour
Abstract:
Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT
Procedia PDF Downloads 63131 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 68130 The Validation of RadCalc for Clinical Use: An Independent Monitor Unit Verification Software
Authors: Junior Akunzi
Abstract:
In the matter of patient treatment planning quality assurance in 3D conformational therapy (3D-CRT) and volumetric arc therapy (VMAT or RapidArc), the independent monitor unit verification calculation (MUVC) is an indispensable part of the process. Concerning 3D-CRT treatment planning, the MUVC can be performed manually applying the standard ESTRO formalism. However, due to the complex shape and the amount of beams in advanced treatment planning technic such as RapidArc, the manual independent MUVC is inadequate. Therefore, commercially available software such as RadCalc can be used to perform the MUVC in complex treatment planning been. Indeed, RadCalc (version 6.3 LifeLine Inc.) uses a simplified Clarkson algorithm to compute the dose contribution for individual RapidArc fields to the isocenter. The purpose of this project is the validation of RadCalc in 3D-CRT and RapidArc for treatment planning dosimetry quality assurance at Antoine Lacassagne center (Nice, France). Firstly, the interfaces between RadCalc and our treatment planning systems (TPS) Isogray (version 4.2) and Eclipse (version13.6) were checked for data transfer accuracy. Secondly, we created test plans in both Isogray and Eclipse featuring open fields, wedges fields, and irregular MLC fields. These test plans were transferred from TPSs according to the radiotherapy protocol of DICOM RT to RadCalc and the linac via Mosaiq (version 2.5). Measurements were performed in water phantom using a PTW cylindrical semiflex ionisation chamber (0.3 cm³, 31010) and compared with the TPSs and RadCalc calculation. Finally, 30 3D-CRT plans and 40 RapidArc plans created with patients CT scan were recalculated using the CT scan of a solid PMMA water equivalent phantom for 3D-CRT and the Octavius II phantom (PTW) CT scan for RapidArc. Next, we measure the doses delivered into these phantoms for each plan with a 0.3 cm³ PTW 31010 cylindrical semiflex ionisation chamber (3D-CRT) and 0.015 cm³ PTW PinPoint ionisation chamber (Rapidarc). For our test plans, good agreements were found between calculation (RadCalc and TPSs) and measurement (mean: 1.3%; standard deviation: ± 0.8%). Regarding the patient plans, the measured doses were compared to the calculation in RadCalc and in our TPSs. Moreover, RadCalc calculations were compared to Isogray and Eclispse ones. Agreements better than (2.8%; ± 1.2%) were found between RadCalc and TPSs. As for the comparison between calculation and measurement the agreement for all of our plans was better than (2.3%; ± 1.1%). The independent MU verification calculation software RadCal has been validated for clinical use and for both 3D-CRT and RapidArc techniques. The perspective of this project includes the validation of RadCal for the Tomotherapy machine installed at centre Antoine Lacassagne.Keywords: 3D conformational radiotherapy, intensity modulated radiotherapy, monitor unit calculation, dosimetry quality assurance
Procedia PDF Downloads 216129 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss
Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin
Abstract:
Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links
Procedia PDF Downloads 128128 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 95127 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 97126 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model
Authors: Mohammad Zamani, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.Keywords: circular vertical, spillway, numerical model, boundary conditions
Procedia PDF Downloads 86125 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution
Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino
Abstract:
This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization
Procedia PDF Downloads 136