Search results for: spatial indicators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3876

Search results for: spatial indicators

276 Assessing Sydney Tar Ponds Remediation and Natural Sediment Recovery in Nova Scotia, Canada

Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer

Abstract:

Sydney Harbour, Nova Scotia has long been subject to effluent and atmospheric inputs of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from a large coking operation and steel plant that operated in Sydney for nearly a century until closure in 1988. Contaminated effluents from the industrial site resulted in the creation of the Sydney Tar Ponds, one of Canada’s largest contaminated sites. Since its closure, there have been several attempts to remediate this former industrial site and finally, in 2004, the governments of Canada and Nova Scotia committed to remediate the site to reduce potential ecological and human health risks to the environment. The Sydney Tar Ponds and Coke Ovens cleanup project has become the most prominent remediation project in Canada today. As an integral part of remediation of the site (i.e., which consisted of solidification/stabilization and associated capping of the Tar Ponds), an extensive multiple media environmental effects program was implemented to assess what effects remediation had on the surrounding environment, and, in particular, harbour sediments. Additionally, longer-term natural sediment recovery rates of select contaminants predicted for the harbour sediments were compared to current conditions. During remediation, potential contributions to sediment quality, in addition to remedial efforts, were evaluated which included a significant harbour dredging project, propeller wash from harbour traffic, storm events, adjacent loading/unloading of coal and municipal wastewater treatment discharges. Two sediment sampling methodologies, sediment grab and gravity corer, were also compared to evaluate the detection of subtle changes in sediment quality. Results indicated that overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported, due to natural recovery. Measurements of sediment indicator parameter concentrations confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, in spite of ongoing remediation activities. Overall, most measured parameters in sediments showed little temporal variability even when using different sampling methodologies, during three years of remediation compared to baseline, except for the detection of significant increases in total PAH concentrations noted during one year of remediation monitoring. The data confirmed the effectiveness of mitigation measures implemented during construction relative to harbour sediment quality, despite other anthropogenic activities and the dynamic nature of the harbour.

Keywords: contaminated sediment, monitoring, recovery, remediation

Procedia PDF Downloads 213
275 South African Multiple Deprivation-Concentration Index Quantiles Differentiated by Components of Success and Impediment to Tuberculosis Control Programme Using Mathematical Modelling in Rural O. R. Tambo District Health Facilities

Authors: Ntandazo Dlatu, Benjamin Longo-Mbenza, Andre Renzaho, Ruffin Appalata, Yolande Yvonne Valeria Matoumona Mavoungou, Mbenza Ben Longo, Kenneth Ekoru, Blaise Makoso, Gedeon Longo Longo

Abstract:

Background: The gap between complexities related to the integration of Tuberculosis /HIV control and evidence-based knowledge motivated the initiation of the study. Therefore, the objective of this study was to explore correlations between national TB management guidelines, multiple deprivation indexes, quantiles, components and levels of Tuberculosis control programme using mathematical modeling in rural O.R. Tambo District Health Facilities, South Africa. Methods: The study design used mixed secondary data analysis and cross-sectional analysis between 2009 and 2013 across O.R Tambo District, Eastern Cape, South Africa using univariate/ bivariate analysis, linear multiple regression models, and multivariate discriminant analysis. Health inequalities indicators and component of an impediment to the tuberculosis control programme were evaluated. Results: In total, 62 400 records for TB notification were analyzed for the period 2009-2013. There was a significant but negative between Financial Year Expenditure (r= -0.894; P= 0.041) Seropositive HIV status(r= -0.979; P= 0.004), Population Density (r = -0.881; P= 0.048) and the number of TB defaulter in all TB cases. It was shown unsuccessful control of TB management program through correlations between numbers of new PTB smear positive, TB defaulter new smear-positive, TB failure all TB, Pulmonary Tuberculosis case finding index and deprivation-concentration-dispersion index. It was shown successful TB program control through significant and negative associations between declining numbers of death in co-infection of HIV and TB, TB deaths all TB and SMIAD gradient/ deprivation-concentration-dispersion index. The multivariate linear model was summarized by unadjusted r of 96%, adjusted R2 of 95 %, Standard Error of estimate of 0.110, R2 changed of 0.959 and significance for variance change for P=0.004 to explain the prediction of TB defaulter in all TB with equation y= 8.558-0.979 x number of HIV seropositive. After adjusting for confounding factors (PTB case finding the index, TB defaulter new smear-positive, TB death in all TB, TB defaulter all TB, and TB failure in all TB). The HIV and TB death, as well as new PTB smear positive, were identified as the most important, significant, and independent indicator to discriminate most deprived deprivation index far from other deprivation quintiles 2-5 using discriminant analysis. Conclusion: Elimination of poverty such as overcrowding, lack of sanitation and environment of highest burden of HIV might end the TB threat in O.R Tambo District, Eastern Cape, South Africa. Furthermore, ongoing adequate budget comprehensive, holistic and collaborative initiative towards Sustainable Developmental Goals (SDGs) is necessary for complete elimination of TB in poor O.R Tambo District.

Keywords: tuberculosis, HIV/AIDS, success, failure, control program, health inequalities, South Africa

Procedia PDF Downloads 138
274 Strategies of Translation: Unlocking the Secret of 'Locksley Hall'

Authors: Raja Lahiani

Abstract:

'Locksley Hall' is a poem that Lord Alfred Tennyson (1809-1892) published in 1842. It is believed to be his first attempt to face as a poet some of the most painful of his experiences, as it is a study of his rising out of sickness into health, conquering his selfish sorrow by faith and hope. So far, in Victorian scholarship as in modern criticism, 'Locksley Hall' has been studied and approached as a canonical Victorian English poem. The aim of this project is to prove that some strategies of translation were used in this poem in such a way as to guarantee its assimilation into the English canon and hence efface to a large extent its Arabic roots. In its relationship with its source text, 'Locksley Hall' is at the same time mimetic and imitative. As part of the terminology used in translation studies, ‘imitation’ means almost the exact opposite of what it means in ordinary English. By adopting an imitative procedure, a translator would do something totally different from the original author, wandering far and freely from the words and sense of the original text. An imitation is thus aimed at an audience which wants the work of the particular translator rather than the work of the original poet. Hallam Tennyson, the poet’s biographer, asserts that 'Locksley Hall' is a simple invention of place, incidents, and people, though he notes that he remembers the poet claiming that Sir William Jones’ prose translation of the Mu‘allaqat (pre-Islamic poems) gave him the idea of the poem. A comparative work would prove that 'Locksley Hall' mirrors a great deal of Tennyson’s biography and hence is not a simple invention of details as asserted by his biographer. It would be challenging to prove that 'Locksley Hall' shares so many details with the Mu‘allaqat, as declared by Tennyson himself, that it needs to be studied as an imitation of the Mu‘allaqat of Imru’ al-Qays and ‘Antara in addition to its being a poem in its own right. Thus, the main aim of this work is to unveil the imitative and mimetic strategies used by Tennyson in his composition of 'Locksley Hall.' It is equally important that this project researches the acculturating assimilative tools used by the poet to root his poem in its Victorian English literary, cultural and spatiotemporal settings. This work adopts a comparative methodology. Comparison is done at different levels. The poem will be contextualized in its Victorian English literary framework. Alien details related to structure, socio-spatial setting, imagery and sound effects shall be compared to Arabic poems from the Mu‘allaqat collection. This would determine whether the poem is a translation, an adaption, an imitation or a genuine work. The ultimate objective of the project is to unveil in this canonical poem a new dimension that has for long been either marginalized or ignored. By proving that 'Locksley Hall' is an imitation of classical Arabic poetry, the project aspires to consolidate its literary value and open up new gates of accessing it.

Keywords: comparative literature, imitation, Locksley Hall, Lord Alfred Tennyson, translation, Victorian poetry

Procedia PDF Downloads 178
273 Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area

Authors: Marina Bubalo, Davor Romić, Stjepan Husnjak, Helena Bakić

Abstract:

Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions.

Keywords: agricultural area, nitrate, factorial correspondence analysis, water quality

Procedia PDF Downloads 241
272 Queer Anti-Urbanism: An Exploration of Queer Space Through Design

Authors: William Creighton, Jan Smitheram

Abstract:

Queer discourse has been tied to a middle-class, urban-centric, white approach to the discussion of queerness. In doing so, the multilayeredness of queer existence has been washed away in favour of palatable queer occupation. This paper uses design to explore a queer anti-urbanist approach to facilitate a more egalitarian architectural occupancy. Scott Herring’s work on queer anti-urbanism is key to this approach. Herring redeploys anti-urbanism from its historical understanding of open hostility, rejection and desire to destroy the city towards a mode of queer critique that counters normative ideals of homonormative metronormative gay lifestyles. He questions how queer identity has been closed down into a more diminutive frame where those who do not fit within this frame are subjected to persecution or silenced through their absence. We extend these ideas through design to ask how a queer anti-urbanist approach facilitates a more egalitarian architectural occupancy. Following a “design as research” methodology, the design outputs allow a vehicle to ask how we might live, otherwise, in architectural space. A design as research methodologically is a process of questioning, designing and reflecting – in a non-linear, iterative approach – establishes itself through three projects, each increasing in scale and complexity. Each of the three scales tackled a different body relationship. The project began exploring the relations between body to body, body to known others, and body to unknown others. Moving through increasing scales was not to privilege the objective, the public and the large scale; instead, ‘intra-scaling’ acts as a tool to re-think how scale reproduces normative ideas of the identity of space. There was a queering of scale. Through this approach, the results were an installation that brings two people together to co-author space where the installation distorts the sensory experience and forces a more intimate and interconnected experience challenging our socialized proxemics: knees might touch. To queer the home, the installation was used as a drawing device, a tool to study and challenge spatial perception, drawing convention, and as a way to process practical information about the site and existing house – the device became a tool to embrace the spontaneous. The final design proposal operates as a multi-scalar boundary-crossing through “private” and “public” to support kinship through communal labour, queer relationality and mooring. The resulting design works to set adrift bodies in a sea of sensations through a mix of pleasure programmes. To conclude, through three design proposals, this design research creates a relationship between queer anti-urbanism and design. It asserts that queering the design process and outcome allows a more inclusive way to consider place, space and belonging. The projects lend to a queer relationality and interdependence by making spaces that support the unsettled, out-of-place, but is it queer enough?

Keywords: queer, queer anti-urbanism, design as research, design

Procedia PDF Downloads 137
271 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 64
270 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 97
269 The Potential of On-Demand Shuttle Services to Reduce Private Car Use

Authors: B. Mack, K. Tampe-Mai, E. Diesch

Abstract:

Findings of an ongoing discrete choice study of future transport mode choice will be presented. Many urban centers face the triple challenge of having to cope with ever increasing traffic congestion, environmental pollution, and greenhouse gas emission brought about by private car use. In principle, private car use may be diminished by extending public transport systems like bus lines, trams, tubes, and trains. However, there are limits to increasing the (perceived) spatial and temporal flexibility and reducing peak-time crowding of classical public transport systems. An emerging new type of system, publicly or privately operated on-demand shuttle bus services, seem suitable to ameliorate the situation. A fleet of on-demand shuttle busses operates without fixed stops and schedules. It may be deployed efficiently in that each bus picks up passengers whose itineraries may be combined into an optimized route. Crowding may be minimized by limiting the number of seats and the inter-seat distance for each bus. The study is conducted as a discrete choice experiment. The choice between private car, public transport, and shuttle service is registered as a function of several push and pull factors (financial costs, travel time, walking distances, mobility tax/congestion charge, and waiting time/parking space search time). After the completion of the discrete choice items, the study participant is asked to rate the three modes of transport with regard to the pull factors of comfort, safety, privacy, and opportunity to engage in activities like reading or surfing the internet. These ratings are entered as additional predictors into the discrete choice experiment regression model. The study is conducted in the region of Stuttgart in southern Germany. N=1000 participants are being recruited. Participants are between 18 and 69 years of age, hold a driver’s license, and live in the city or the surrounding region of Stuttgart. In the discrete choice experiment, participants are asked to assume they lived within the Stuttgart region, but outside of the city, and were planning the journey from their apartment to their place of work, training, or education during the peak traffic time in the morning. Then, for each item of the discrete choice experiment, they are asked to choose between the transport modes of private car, public transport, and on-demand shuttle in the light of particular values of the push and pull factors studied. The study will provide valuable information on the potential of switching from private car use to the use of on-demand shuttles, but also on the less desirable potential of switching from public transport to on-demand shuttle services. Furthermore, information will be provided on the modulation of these switching potentials by pull and push factors.

Keywords: determinants of travel mode choice, on-demand shuttle services, private car use, public transport

Procedia PDF Downloads 153
268 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs

Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza

Abstract:

Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.

Keywords: basal crop coefficient, irrigation, remote sensing, SETMI

Procedia PDF Downloads 120
267 The Biomechanical Assessment of Balance and Gait for Stroke Patients and the Implications in the Diagnosis and Rehabilitation

Authors: A. Alzahrani, G. Arnold, W. Wang

Abstract:

Background: Stroke commonly occurs in middle-aged and elderly populations, and the diagnosis of early stroke is still difficult. Patients who have suffered a stroke have different balance and gait patterns from healthy people. Advanced techniques of motion analysis have been routinely used in the clinical assessment of cerebral palsy. However, so far, little research has been done on the direct diagnosis of early stroke patients using motion analysis. Objectives: The aim of this study was to investigate whether patients with stroke have different balance and gait from healthy people and which biomechanical parameters could be used to predict and diagnose potential patients who are at a potential risk to stroke. Methods: Thirteen patients with stroke were recruited as subjects whose gait and balance was analysed. Twenty normal subjects at the matched age participated in this study as a control group. All subjects’ gait and balance were collected using Vicon Nexus® to obtain the gait parameters, kinetic, and kinematic parameters of the hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 6 trials of single-leg balance for each side and 10 trials of walking. From the recorded trials, three good ones were analysed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Result: The temporal-spatial variables of Stroke subjects were compared with the healthy subjects; it was found that there was a significant difference (p < 0.05) between the groups. The step length, speed, cadence were lower in stroke subjects as compared to the healthy groups. The stroke patients group showed significantly decreased in gait speed (mean and SD: 0.85 ± 0.33 m/s), cadence ( 96.71 ± 16.14 step/min), and step length (0.509 ± 017 m) in compared to healthy people group whereas the gait speed was 1.2 ± 0.11 m/s, cadence 112 ± 8.33 step/min, and step length 0.648 ± 0.43 m. Moreover, it was observed that patients with stroke have significant differences in the ankle, hip, and knee joints’ kinematics in the sagittal and coronal planes. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g., maintaining single-leg stance time in the stroke patients showed shorter duration (5.97 ± 6.36 s) in compared to healthy people group (14.36 ± 10.20 s). Conclusion: Our result showed that there are significantly differences between stroke patients and healthy subjects in the various aspects of gait analysis and balance test, as a consequences of these findings some of the biomechanical parameters such as joints kinematics, gait parameters, and single-leg stance balance test could be used in clinical practice to predict and diagnose potential patients who are at a high risk of further stroke.

Keywords: gait analysis, kinetics, kinematics, single-leg stance, Stroke

Procedia PDF Downloads 116
266 Evaluation of Groundwater Quality and Contamination Sources Using Geostatistical Methods and GIS in Miryang City, Korea

Authors: H. E. Elzain, S. Y. Chung, V. Senapathi, Kye-Hun Park

Abstract:

Groundwater is considered a significant source for drinking and irrigation purposes in Miryang city, and it is attributed to a limited number of a surface water reservoirs and high seasonal variations in precipitation. Population growth in addition to the expansion of agricultural land uses and industrial development may affect the quality and management of groundwater. This research utilized multidisciplinary approaches of geostatistics such as multivariate statistics, factor analysis, cluster analysis and kriging technique in order to identify the hydrogeochemical process and characterizing the control factors of the groundwater geochemistry distribution for developing risk maps, exploiting data obtained from chemical investigation of groundwater samples under the area of study. A total of 79 samples have been collected and analyzed using atomic absorption spectrometer (AAS) for major and trace elements. Chemical maps using 2-D spatial Geographic Information System (GIS) of groundwater provided a powerful tool for detecting the possible potential sites of groundwater that involve the threat of contamination. GIS computer based map exhibited that the higher rate of contamination observed in the central and southern area with relatively less extent in the northern and southwestern parts. It could be attributed to the effect of irrigation, residual saline water, municipal sewage and livestock wastes. At wells elevation over than 85m, the scatter diagram represents that the groundwater of the research area was mainly influenced by saline water and NO3. Level of pH measurement revealed low acidic condition due to dissolved atmospheric CO2 in the soil, while the saline water had a major impact on the higher values of TDS and EC. Based on the cluster analysis results, the groundwater has been categorized into three group includes the CaHCO3 type of the fresh water, NaHCO3 type slightly influenced by sea water and Ca-Cl, Na-Cl types which are heavily affected by saline water. The most predominant water type was CaHCO3 in the study area. Contamination sources and chemical characteristics were identified from factor analysis interrelationship and cluster analysis. The chemical elements that belong to factor 1 analysis were related to the effect of sea water while the elements of factor 2 associated with agricultural fertilizers. The degree level, distribution, and location of groundwater contamination have been generated by using Kriging methods. Thus, geostatistics model provided more accurate results for identifying the source of contamination and evaluating the groundwater quality. GIS was also a creative tool to visualize and analyze the issues affecting water quality in the Miryang city.

Keywords: groundwater characteristics, GIS chemical maps, factor analysis, cluster analysis, Kriging techniques

Procedia PDF Downloads 147
265 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 104
264 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley

Authors: Kali Prasad Sarma, Sanghita Dutta

Abstract:

Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.

Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals

Procedia PDF Downloads 270
263 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 61
262 The Impact of Trade on Stock Market Integration of Emerging Markets

Authors: Anna M. Pretorius

Abstract:

The emerging markets category for portfolio investment was introduced in 1986 in an attempt to promote capital market development in less developed countries. Investors traditionally diversified their portfolios by investing in different developed markets. However, high growth opportunities forced investors to consider emerging markets as well. Examples include the rapid growth of the “Asian Tigers” during the 1980s, growth in Latin America during the 1990s and the increased interest in emerging markets during the global financial crisis. As such, portfolio flows to emerging markets have increased substantially. In 2002 7% of all equity allocations from advanced economies went to emerging markets; this increased to 20% in 2012. The stronger links between advanced and emerging markets led to increased synchronization of asset price movements. This increased level of stock market integration for emerging markets is confirmed by various empirical studies. Against the background of increased interest in emerging market assets and the increasing level of integration of emerging markets, this paper focuses on the determinants of stock market integration of emerging market countries. Various studies have linked the level of financial market integration with specific economic variables. These variables include: economic growth, local inflation, trade openness, local investment, budget surplus/ deficit, market capitalization, domestic bank credit, domestic institutional and legal environment and world interest rates. The aim of this study is to empirically investigate to what extent trade-related determinants have an impact on stock market integration. The panel data sample include data of 16 emerging market countries: Brazil, Chile, China, Colombia, Czech Republic, Hungary, India, Malaysia, Pakistan, Peru, Philippines, Poland, Russian Federation, South Africa, Thailand and Turkey for the period 1998-2011. The integration variable for each emerging stock market is calculated as the explanatory power of a multi-factor model. These factors are extracted from a large panel of global stock market returns. Trade related explanatory variables include: exports as percentage of GDP, imports as percentage of GDP and total trade as percentage of GDP. Other macroeconomic indicators – such as market capitalisation, the size of the budget deficit and the effectiveness of the regulation of the securities exchange – are included in the regressions as control variables. An initial analysis on a sample of developed stock markets could not identify any significant determinants of stock market integration. Thus the macroeconomic variables identified in the literature are much more significant in explaining stock market integration of emerging markets than stock market integration of developed markets. The three trade variables are all statistically significant at a 5% level. The market capitalisation variable is also significant while the regulation variable is only marginally significant. The global financial crisis has highlighted the urgency to better understand the link between the financial and real sectors of the economy. This paper comes to the important finding that, apart from the level of market capitalisation (as financial indicator), trade (representative of the real economy) is a significant determinant of stock market integration of countries not yet classified as developed economies.

Keywords: emerging markets, financial market integration, panel data, trade

Procedia PDF Downloads 277
261 Determinants of Child Nutritional Inequalities in Pakistan: Regression-Based Decomposition Analysis

Authors: Nilam Bano, Uzma Iram

Abstract:

Globally, the dilemma of undernutrition has become a notable concern for the researchers, academicians, and policymakers because of its severe consequences for many centuries. The nutritional deficiencies create hurdles for the people to achieve goals related to live a better lifestyle. Not only at micro level but also at the macro level, the consequences of undernutrition affect the economic progress of the country. The initial five years of a child’s life are considered critical for the physical growth and brain development. In this regard, children require special care and good quality food (nutrient intake) to fulfill their nutritional demand of the growing body. Having the sensitive stature and health, children specially under the age of 5 years are more vulnerable to the poor economic, housing, environmental and other social conditions. Beside confronting economic challenges and political upheavals, Pakistan is also going through from a rough patch in the context of social development. Majority of the children are facing serious health problems in the absence of required nutrition. The complexity of this issue is getting severe day by day and specially children are left behind with different type of immune problems and vitamins and mineral deficiencies. It is noted that children from the well-off background are less likely affected by the undernutrition. In order to underline this issue, the present study aims to highlight the existing nutritional inequalities among the children of under five years in Pakistan. Moreover, this study strives to decompose those factors that severely affect the existing nutritional inequality and standing in the queue to capture the consideration of concerned authorities. Pakistan Demographic and Health Survey 2012-13 was employed to assess the relevant indicators of undernutrition such as stunting, wasting, underweight and associated socioeconomic factors. The objectives were executed through the utilization of the relevant empirical techniques. Concentration indices were constructed to measure the nutritional inequalities by utilizing three measures of undernutrition; stunting, wasting and underweight. In addition to it, the decomposition analysis following the logistic regression was made to unfold the determinants that severely affect the nutritional inequalities. The negative values of concentration indices illustrate that children from the marginalized background are affected by the undernutrition more than their counterparts who belong from rich households. Furthermore, the result of decomposition analysis indicates that child age, size of a child at birth, wealth index, household size, parents’ education, mother’s health and place of residence are the most contributing factors in the prevalence of existing nutritional inequalities. Considering the result of the study, it is suggested to the policymakers to design policies in a way so that the health sector of Pakistan can stimulate in a productive manner. Increasing the number of effective health awareness programs for mothers would create a notable difference. Moreover, the education of the parents must be concerned by the policymakers as it has a significant association with the present research in terms of eradicating the nutritional inequalities among children.

Keywords: concentration index, decomposition analysis, inequalities, undernutrition, Pakistan

Procedia PDF Downloads 114
260 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 55
259 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction

Authors: Alisawi Alaa T., Collins P. E. F.

Abstract:

The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.

Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard

Procedia PDF Downloads 73
258 Coastal Vulnerability Index and Its Projection for Odisha Coast, East Coast of India

Authors: Bishnupriya Sahoo, Prasad K. Bhaskaran

Abstract:

Tropical cyclone is one among the worst natural hazards that results in a trail of destruction causing enormous damage to life, property, and coastal infrastructures. In a global perspective, the Indian Ocean is considered as one of the cyclone prone basins in the world. Specifically, the frequency of cyclogenesis in the Bay of Bengal is higher compared to the Arabian Sea. Out of the four maritime states in the East coast of India, Odisha is highly susceptible to tropical cyclone landfall. Historical records clearly decipher the fact that the frequency of cyclones have reduced in this basin. However, in the recent decades, the intensity and size of tropical cyclones have increased. This is a matter of concern as the risk and vulnerability level of Odisha coast exposed to high wind speed and gusts during cyclone landfall have increased. In this context, there is a need to assess and evaluate the severity of coastal risk, area of exposure under risk, and associated vulnerability with a higher dimension in a multi-risk perspective. Changing climate can result in the emergence of a new hazard and vulnerability over a region with differential spatial and socio-economic impact. Hence there is a need to have coastal vulnerability projections in a changing climate scenario. With this motivation, the present study attempts to estimate the destructiveness of tropical cyclones based on Power Dissipation Index (PDI) for those cyclones that made landfall along Odisha coast that exhibits an increasing trend based on historical data. The study also covers the futuristic scenarios of integral coastal vulnerability based on the trends in PDI for the Odisha coast. This study considers 11 essential and important parameters; the cyclone intensity, storm surge, onshore inundation, mean tidal range, continental shelf slope, topo-graphic elevation onshore, rate of shoreline change, maximum wave height, relative sea level rise, rainfall distribution, and coastal geomorphology. The study signifies that over a decadal scale, the coastal vulnerability index (CVI) depends largely on the incremental change in variables such as cyclone intensity, storm surge, and associated inundation. In addition, the study also performs a critical analysis on the modulation of PDI on storm surge and inundation characteristics for the entire coastal belt of Odisha State. Interestingly, the study brings to light that a linear correlation exists between the storm-tide with PDI. The trend analysis of PDI and its projection for coastal Odisha have direct practical applications in effective coastal zone management and vulnerability assessment.

Keywords: Bay of Bengal, coastal vulnerability index, power dissipation index, tropical cyclone

Procedia PDF Downloads 205
257 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 193
256 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 129
255 Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications

Authors: Huseyin Sinan Gunesli

Abstract:

Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management.

Keywords: process safety principles, energy security, natural gas pipeline operations, alarm rationalization, alarm management, alarm management application

Procedia PDF Downloads 72
254 Origins: An Interpretive History of MMA Design Studio’s Exhibition for the 2023 Venice Biennale

Authors: Jonathan A. Noble

Abstract:

‘Origins’ is an exhibition designed and installed by MMA Design Studio, at the 2023 Venice Biennale. The instillation formed part of the ‘Dangerous Liaisons’ group exhibition at the Arsenale building. An immersive experience was created for those who visited, where video projection and the bodies of visitors interacted with the scene. Designed by South African architect, Mphethi Morojele – founder and owner of MMA – the primary inspiration for ‘Origins’ was the recent discovery by Professor Karim Sadr in 2019, of a substantial Tswana settlement. Situated in present day Suikerbosrand Nature Reserve, some 45km south of Johannesburg, this precolonial city named Kweneng, has been dated back to the fifteenth century. This remarkable discovery was achieved thanks to advanced aerial, LiDAR scanning technology, which was used to capture the traces of Kweneng, spanning a terrain of some 10km long and 2km wide. Discovered by light (LiDAR) and exhibited through light, Origins presents a simulated experience of Kweneng. The presentation of Kweneng was achieved primarily though video, with a circular projection onto the floor of an animated LiDAR data sequence, and onto the walls a filmed dance sequence choreographed to embody the architectural, spatial and symbolic significance of Kweneng. This paper documents the design process that was involved in the conceptualization, development and final realization of this noteworthy exhibition, with an elucidation upon key social and cultural questions pertaining to precolonial heritage, reimagined histories and postcolonial identity. Periods of change and of social awakening sometimes spark an interest in questions of origin, of cultural lineage and belonging – and which certainly is the case for contemporary, post-Apartheid South Africa. Researching this paper has required primary study of MMA Design Studio’s project archive, including various proposals and other design related documents, conceptual design sketches, architectural drawings and photographs. This material is supported by the authors first-hand interviews with Morejele and others who were involved, especially with respect to the choreography of the interpretive dance, LiDAR visualization techniques and video production that informed the simulated, immersive experience at the exhibition. Presenting a ‘dangerous liaison’ between architecture and dance, Origins looks into the distant past to frame contemporary questions pertaining to intangible heritage, animism and embodiment through architecture and dance – considerations which are required “to survive the future”, says Morojele.

Keywords: architecture and dance, Kweneng, MMA design studio, origins, Venice Biennale

Procedia PDF Downloads 51
253 An Integrated Framework for Wind-Wave Study in Lakes

Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung

Abstract:

The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.

Keywords: wave modelling, wind-wave, extreme value analysis, marina

Procedia PDF Downloads 55
252 The Development of Local-Global Perceptual Bias across Cultures: Examining the Effects of Gender, Education, and Urbanisation

Authors: Helen J. Spray, Karina J. Linnell

Abstract:

Local-global bias in adulthood is strongly dependent on environmental factors and a global bias is not the universal characteristic of adult perception it was once thought to be: whilst Western adults typically demonstrate a global bias, Namibian adults living in traditional villages possess a strong local bias. Furthermore, environmental effects on local-global bias have been shown to be highly gender-specific; whereas urbanisation promoted a global bias in urbanised Namibian women but not men, education promoted a global bias in urbanised Namibian men but not women. Adult populations, however, provide only a snapshot of the gene-environment interactions which shape perceptual bias. Yet, to date, there has been little work on the development of local-global bias across environmental settings. In the current study, local-global bias was assessed using a similarity-matching task with Navon figures in children aged between 4 and 15 years from across three populations: traditional Namibians, urban Namibians, and urban British. For the two Namibian groups, measures of urbanisation and education were obtained. Data were subjected to both between-group and within-group analyses. Between-group analyses compared developmental trajectories across population and gender. These analyses revealed a global bias from even as early as 4 in the British sample, and showed that the developmental onset of a global bias is not fixed. Urbanised Namibian children ultimately developed a global bias that was indistinguishable from British children; however, a global bias did not emerge until much later in development. For all populations, the greatest developmental effects were observed directly following the onset of formal education. No overall gender effects were observed; however, there was a significant gender by age interaction which was difficult to reconcile with existing biological-level accounts of gender differences in the development of local-global bias. Within-group analyses compared the effects of urbanisation and education on local-global bias for traditional and urban Namibian boys and girls separately. For both traditional and urban boys, education mediated all effects of age and urbanisation; however, this was not the case for girls. Traditional Namibian girls retained a local bias regardless of age, education, or urbanisation, and in urbanised girls, the development of a global bias was not attributable to any one factor specifically. These results are broadly consistent with aforementioned findings that education promoted a global bias in urbanised Namibian men but not women. The development of local-global bias does not follow a fixed trajectory but is subject to environmental control. Understanding how variability in the development of local-global bias might arise, particularly in the context of gender, may have far-reaching implications. For example, a number of educationally important cognitive functions (e.g., spatial ability) are known to show consistent gender differences in childhood and local-global bias may mediate some of these effects. With education becoming an increasingly prevalent force across much of the developing world it will be important to understand the processes that underpin its effects and their implications.

Keywords: cross-cultural, development, education, gender, local-global bias, perception, urbanisation, urbanization

Procedia PDF Downloads 118
251 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol

Authors: S. B. R. Slagmulder

Abstract:

Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.

Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive

Procedia PDF Downloads 46
250 Implementation of Real-World Learning Experiences in Teaching Courses of Medical Microbiology and Dietetics for Health Science Students

Authors: Miriam I. Jimenez-Perez, Mariana C. Orellana-Haro, Carolina Guzman-Brambila

Abstract:

As part of microbiology and dietetics courses, students of medicine and nutrition analyze the main pathogenic microorganisms and perform dietary analyzes. The course of microbiology describes in a general way the main pathogens including bacteria, viruses, fungi, and parasites, as well as their interaction with the human species. We hypothesize that lack of practical application of the course causes the students not to find the value and the clinical application of it when in reality it is a matter of great importance for healthcare in our country. The courses of the medical microbiology and dietetics are mostly theoretical and only a few hours of laboratory practices. Therefore, it is necessary the incorporation of new innovative techniques that involve more practices and community fieldwork, real cases analysis and real-life situations. The purpose of this intervention was to incorporate real-world learning experiences in the instruction of medical microbiology and dietetics courses, in order to improve the learning process, understanding and the application in the field. During a period of 6 months, medicine and nutrition students worked in a community of urban poverty. We worked with 90 children between 4 and 6 years of age from low-income families with no access to medical services, to give an infectious diagnosis related to nutritional status in these children. We expect that this intervention would give a different kind of context to medical microbiology and dietetics students improving their learning process, applying their knowledge and laboratory practices to help a needed community. First, students learned basic skills in microbiology diagnosis test during laboratory sessions. Once, students acquired abilities to make biochemical probes and handle biological samples, they went to the community and took stool samples from children (with the corresponding informed consent). Students processed the samples in the laboratory, searching for enteropathogenic microorganism with RapID™ ONE system (Thermo Scientific™) and parasites using Willis and Malloy modified technique. Finally, they compared the results with the nutritional status of the children, previously measured by anthropometric indicators. The anthropometric results were interpreted by the OMS Anthro software (WHO, 2011). The microbiological result was interpreted by ERIC® Electronic RapID™ Code Compendium software and validated by a physician. The results were analyses of infectious outcomes and nutritional status. Related to fieldwork community learning experiences, our students improved their knowledge in microbiology and were capable of applying this knowledge in a real-life situation. They found this kind of learning useful when they translate theory to a real-life situation. For most of our students, this is their first contact as health caregivers with real population, and this contact is very important to help them understand the reality of many people in Mexico. In conclusion, real-world or fieldwork learning experiences empower our students to have a real and better understanding of how they can apply their knowledge in microbiology and dietetics and help a much- needed population, this is the kind of reality that many people live in our country.

Keywords: real-world learning experiences, medical microbiology, dietetics, nutritional status, infectious status.

Procedia PDF Downloads 103
249 Measuring Digital Literacy in the Chilean Workforce

Authors: Carolina Busco, Daniela Osses

Abstract:

The development of digital literacy has become a fundamental element that allows for citizen inclusion, access to quality jobs, and a labor market capable of responding to the digital economy. There are no methodological instruments available in Chile to measure the workforce’s digital literacy and improve national policies on this matter. Thus, the objective of this research is to develop a survey to measure digital literacy in a sample of 200 Chilean workers. Dimensions considered in the instrument are sociodemographics, access to infrastructure, digital education, digital skills, and the ability to use e-government services. To achieve the research objective of developing a digital literacy model of indicators and a research instrument for this purpose, along with an exploratory analysis of data using factor analysis, we used an empirical, quantitative-qualitative, exploratory, non-probabilistic, and cross-sectional research design. The research instrument is a survey created to measure variables that make up the conceptual map prepared from the bibliographic review. Before applying the survey, a pilot test was implemented, resulting in several adjustments to the phrasing of some items. A validation test was also applied using six experts, including their observations on the final instrument. The survey contained 49 items that were further divided into three sets of questions: sociodemographic data; a Likert scale of four values ranked according to the level of agreement; iii) multiple choice questions complementing the dimensions. Data collection occurred between January and March 2022. For the factor analysis, we used the answers to 12 items with the Likert scale. KMO showed a value of 0.626, indicating a medium level of correlation, whereas Bartlett’s test yielded a significance value of less than 0.05 and a Cronbach’s Alpha of 0.618. Taking all factor selection criteria into account, we decided to include and analyze four factors that together explain 53.48% of the accumulated variance. We identified the following factors: i) access to infrastructure and opportunities to develop digital skills at the workplace or educational establishment (15.57%), ii) ability to solve everyday problems using digital tools (14.89%), iii) online tools used to stay connected with others (11.94%), and iv) residential Internet access and speed (11%). Quantitative results were discussed within six focus groups using heterogenic selection criteria related to the most relevant variables identified in the statistical analysis: upper-class school students; middle-class university students; Ph.D. professors; low-income working women, elderly individuals, and a group of rural workers. The digital divide and its social and economic correlations are evident in the results of this research. In Chile, the items that explain the acquisition of digital tools focus on access to infrastructure, which ultimately puts the first filter on the development of digital skills. Therefore, as expressed in the literature review, the advance of these skills is radically different when sociodemographic variables are considered. This increases socioeconomic distances and exclusion criteria, putting those who do not have these skills at a disadvantage and forcing them to seek the assistance of others.

Keywords: digital literacy, digital society, workforce digitalization, digital skills

Procedia PDF Downloads 51
248 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity

Authors: Ladislav Écsi, Roland Jančo

Abstract:

Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.

Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility

Procedia PDF Downloads 98
247 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 234