Search results for: modeling delay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4677

Search results for: modeling delay

1107 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 188
1106 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 248
1105 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 382
1104 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event

Authors: Nadine Ayasha

Abstract:

Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.

Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline

Procedia PDF Downloads 155
1103 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 359
1102 Kidney Supportive Care in Canada: A Constructivist Grounded Theory of Dialysis Nurses’ Practice Engagement

Authors: Jovina Concepcion Bachynski, Lenora Duhn, Idevania G. Costa, Pilar Camargo-Plazas

Abstract:

Kidney failure is a life-limiting condition for which treatment, such as dialysis (hemodialysis and peritoneal dialysis), can exact a tremendously high physical and psychosocial symptom burden. Kidney failure can be severe enough to require a palliative approach to care. The term supportive care can be used in lieu of palliative care to avoid the misunderstanding that palliative care is synonymous with end-of-life or hospice care. Kidney supportive care, encompassing advance care planning, is an approach to care that improves the quality of life for people receiving dialysis through early identification and treatment of symptoms throughout the disease trajectory. Advanced care planning involves ongoing conversations about the values, goals, and preferences for future care between individuals and their healthcare teams. Kidney supportive care is underutilized and often initiated late in this population. There is evidence to indicate nurses are not providing the necessary elements of supportive kidney care. Dialysis nurses’ delay or lack of engagement in supportive care until close to the end of life may result in people dying without receiving optimal palliative care services. Using Charmaz’s constructivist grounded theory, the purpose of this doctoral study is to develop a substantive theory that explains the process of engagement in supportive care by nurses working in dialysis settings in Canada. Through initial purposeful and subsequent theoretical sampling, 23 nurses with current or recent work experience in outpatient hemodialysis, home hemodialysis, and peritoneal dialysis settings drawn from across Canada were recruited to participate in two intensive interviews using the Zoom© teleconferencing platform. Concurrent data collection and data analysis, constant comparative analysis of initial and focused codes until the attainment of theoretical saturation, and memo-writing, as well as researcher reflexivity, have been undertaken to aid the emergence of concepts, categories, and, ultimately, the constructed theory. At the time of abstract submission, data analysis is currently at the second level of coding (i.e., focused coding stage) of the research study. Preliminary categories include: (a) focusing on biomedical care; (b) multi-dimensional challenges to having the conversation; (c) connecting and setting boundaries with patients; (d) difficulty articulating kidney-supportive care; and (e) unwittingly practising kidney-supportive care. For the conference, the resulting theory will be presented. Nurses working in dialysis are well-positioned to ensure the delivery of quality kidney-supportive care. This study will help to determine the process and the factors enabling and impeding nurse engagement in supportive care in dialysis to effect change for normalizing advance care planning conversations in the clinical setting. This improved practice will have substantive beneficial implications for the many individuals living with kidney failure and their supporting loved ones.

Keywords: dialysis, kidney failure, nursing, supportive care

Procedia PDF Downloads 100
1101 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System

Authors: Larry Audet

Abstract:

Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.

Keywords: creativity, leadership, KEYS survey, teaching, work climate

Procedia PDF Downloads 163
1100 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data

Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen

Abstract:

Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.

Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation

Procedia PDF Downloads 62
1099 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz

Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.

Keywords: characterization, dissolution, Efavirenz, solid dispersions

Procedia PDF Downloads 627
1098 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 398
1097 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 123
1096 Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring

Authors: Seyedtaghi Mirmohammadi, J. Yazdani, S. M. Asadi, M. Rokni, A. Toosi

Abstract:

There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters.

Keywords: particulate matters, classrooms, regression, concentration, humidity

Procedia PDF Downloads 309
1095 Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Authors: Adeniyi G. Adeogun, Bolaji F. Sule, Adebayo W. Salami, Michael O. Daramola

Abstract:

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Keywords: GIS, modeling, sensitivity analysis, SWAT, water yield, watershed level

Procedia PDF Downloads 431
1094 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 438
1093 A Brief Review on Doping in Sports and Performance-Enhancing Drugs

Authors: Zahra Mohajer, Afsaneh Soltani

Abstract:

Doping is a major issue in competitive sports and is favored by vast groups of athletes. The feeling of being higher-ranking than others and gaining fame has caused many athletes to misuse drugs. The definition of doping is to use prohibited substances and/or methods that help physical or mental performances or both. Doping counts as the illegal use of chemical substances or drugs, excessive amounts of physiological substances to increase the performance at or out of competition or even the use of inappropriate medications to treat an injury to gain the ability to participate in a competition. The International Olympic Committee (IOC) and World Anti-Doping Agency (WADA) have forbidden these substances to ensure fair and equal competition and also the health of the competitors. As of 2004 WADA has published an international list of illegal substances used for doping, which is updated annually. In the process of the Genome Project scientists have gained the ability to treat numerous diseases by gene therapy, which may result in bodily performance increase and therefore a potential opportunity to misuse by some athletes. Gene doping is defined as the non-therapeutic direct and indirect genetic modifications using genetic materials that can improve the performances in sports events. Biosynthetic drugs are a form of indirect genetic engineering. The method can be performed in three ways such as injecting the DNA directly into the muscle, inserting the genetically engineered cells, or transferring the DNA using a virus as a vector. Erythropoietin is a hormone majorly released by the kidney and in small amounts by the liver. Its function is to stimulate the erythropoiesis and therefore the more production of red blood cells (RBC) which causes an increase in Hemoglobin (Hb). During this process, the oxygen delivery to muscles will increase, which will improve athletic performance and postpone exhaustion. There are ways to increase the oxygen transferred to muscles such as blood transfusion, stimulating the production of red blood cells by using Erythropoietin (EPO), and also using allosteric effectors of Hemoglobin. EPO can either be injected as a protein or can be inserted into the cells as the gene which encodes EPO. Adeno-associated viruses have been employed to deliver the EPO gene to the cells. Employing the genes that naturally exist in the human body such as the EPO gene can reduce the risk of detecting gene doping. The first research about blood doping was conducted in 1947. The study has shown that an increase in hematocrit (HCT) up to 55% following homologous transfusion makes it more unchallenging for the body to perform the exercise at the altitude. Thereafter athletes’ attraction to blood infusion escalated. Also, a study has demonstrated that by reinfusing their own blood 4 weeks after being drawn, three men have shown a rise in Hb level which improved the oxygen uptake, and a delay in exhaustion. The list of performance-enhancing drugs is published by WADA annually and includes the following drugs: anabolic agents, hormones, Beta-2 agonists, Beta-blockers, Diuretics, Stimulants, narcotics, cannabinoids, and corticosteroids.

Keywords: doping, PEDs, sports, WADA

Procedia PDF Downloads 105
1092 How Social Capital Mediates the Relationships between Interpersonal Interaction and Health: Location-Based Augmented Reality Games

Authors: Chechen Liao, Pui-Lai To, Yi-Hui Wang

Abstract:

Recently location-based augmented reality games (LBS+AR) have become increasingly popular as a major form of entertainment. Location-based augmented reality games have provided a lot of opportunities for face-to-face interaction among players. Prior studies also indicate that the social side of location-based augmented reality games are one of the major reasons for players to engage in the games. However, the impact of the usage of location-based augmented reality games has not been well explored. The study examines how interpersonal interaction affects social capital and health through playing location-based augmented reality games. The study also investigates how social capital mediates the relationships between interpersonal interaction and health. The study uses survey method to collect data. Six-hundred forty-seven questionnaires are collected. Structural equation modeling is used to investigate the relationships among variables. The causal relationships between variables in the research model are tested. The results of the study indicated that four interpersonal attraction attributes, including ability, proximity, similarity, and familiarity, are identified by ways of factor analysis. Interpersonal attraction is important for location-based augmented reality game-players to develop bonding and bridging social capital. Bonding and bridging social capital have a positive impact on the mental and social health of game-players. The results of the study provide academic and practical implications for future growth of location-based augmented reality games.

Keywords: health, interpersonal interaction, location-based augmented reality games, social capital

Procedia PDF Downloads 253
1091 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon

Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David

Abstract:

The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.

Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining

Procedia PDF Downloads 153
1090 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression

Procedia PDF Downloads 393
1089 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 269
1088 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure

Authors: A. A. Dare, E. U. Iniegbedion

Abstract:

Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.

Keywords: heat source, modelling, enclosure, furnace

Procedia PDF Downloads 253
1087 On the Development of Medical Additive Manufacturing in Egypt

Authors: Khalid Abdelghany

Abstract:

Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.

Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants

Procedia PDF Downloads 311
1086 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion

Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr

Abstract:

The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.

Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)

Procedia PDF Downloads 419
1085 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.

Keywords: smartphone, brand image, perceived value, continuous usage intention

Procedia PDF Downloads 195
1084 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 139
1083 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia

Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud

Abstract:

Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.

Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma

Procedia PDF Downloads 60
1082 Previously Undescribed Cardiac Abnormalities in Two Unrelated Autistic Males with Causative Variants in CHD8

Authors: Mariia A. Parfenenko, Ilya S. Dantsev, Sergei V. Bochenkov, Natalia V. Vinogradova, Olga S. Groznova, Victoria Yu. Voinova

Abstract:

Introduction: Autism is the most common neurodevelopmental disorder. Autism is characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns and frequently co-occurs with epilepsy, intellectual disabilities, connective tissue disorders, and other conditions. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and neurodevelopment in embryogenesis. CHD8 is one of the genes most frequently involved in autism. Patients and methods: 2 unrelated male patients, P3 and P12, aged 3 and 12 years old, underwent whole genome sequencing, which determined that they both had different likely pathogenic variants, both previously undescribed in literature. Sanger sequencing later determined that P12 inherited the variant from his affected mother. Results: P3 and P12 presented with autism, a developmental delay, ataxia, sleep disorders, overgrowth, and macrocephaly, as well as other clinical features typically present in patients with causative variants in CHD8. The mother of P12 also has autistic traits, as well as ataxia, hypotonia, sleep disorders, and other symptoms. However, P3 and P12 also have different cardiac abnormalities. P3 had signs of a repolarization disorder: a flattened T wave in the III and aVF derivations and a negative T wave in the V1-V2 derivations. He also had structural valve anomalies with associated regurgitation, local contractility impairment of the left ventricular, and diastolic dysfunction of the right ventricle. Meanwhile, P12 had Wolff-Parkinson-White syndrome and underwent radiofrequency ablation at the age of 2 years. At the time of observation, P12 had mild sinus arrhythmia and an incomplete right bundle branch block, as well as arterial hypertension. Discussion: Cardiac abnormalities were not previously reported in patients with causative variants in CHD8. The underlying mechanism for the formation of those abnormalities is currently unknown. However, the two hypotheses are either a disordered interaction with CHD7 – another chromodomain remodeler known to be directly involved in the cardiophenotype of CHARGE syndrome – a rare condition characterized by coloboma, heart defects and growth abnormalities, or the disrupted functioning of CHD8 as an A-Kinase Anchoring Protein, which are known to modulate cardiac function. Conclusion: We observed 2 unrelated autistic males with likely pathogenic variants in CHD8 that presented with typical symptoms of CHD8-related neurodevelopmental disorder, as well as cardiac abnormalities. Cardiac abnormalities have, until now, been considered uncharacteristic for patients with causative variants in CHD8. Further accumulation of data, including experimental evidence of the involvement of CHD8 in heart formation, will elucidate the mechanism underlying the cardiophenotype of those patients. Acknowledgements: Molecular genetic testing of the patients was made possible by the Charity Fund for medical and social genetic aid projects «Life Genome.»

Keywords: autism spectrum disorders, chromodomain-helicase-DNA-binding protein 8, neurodevelopmental disorder, cardio phenotype

Procedia PDF Downloads 84
1081 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion

Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay

Abstract:

Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.

Keywords: DFT, picolinate, IR, Raman, nonlinear optic

Procedia PDF Downloads 495
1080 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades

Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond

Abstract:

Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.

Keywords: turbomachine, anti-icing, cascade rig, runback water

Procedia PDF Downloads 181
1079 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model

Authors: Nafiseh Ebrahimi, Amir Jafari

Abstract:

The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.

Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel

Procedia PDF Downloads 134
1078 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 126