Search results for: voice segmentation
604 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System
Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone
Abstract:
Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality
Procedia PDF Downloads 156603 Character Bioacoustics White-Rumped Shama Copsychus malabaricus as a Cage-Bird
Authors: Novia Liza Rahmawaty, Wilson Novarino, Muhammad Nazri Janra
Abstract:
Indonesian people love to keep songbird in cage to be competed, such as White-rumped Shama (Copsychus malabaricus). Each individual White-rumped Shama will be pitted their song and try to imitate the rhythm of the enemy with its songs. This study was conducted to see the natural song characters of White-rumped Shama and song character from birds that had been trained and comparison in three different places in West Sumatra. Individuals were recorded totaling 30 individuals in three areas in West Sumatra namely Padang, Solok and Pariaman and sound recordings of White-rumped Shama in nature were taken in HBW and Xenocanto website. Research has done conducted from June to October 2016 at place group practice of birdsongs and recorded at 16:00 to 18:00 pm. These voices were analyzed by Avisoft SAS-Lab Lite inform of oscillogram and sonogram. Measured parameters included: the length of voice, repertoire size, number of syllable type, syllable repertoire, and song repertoire. The results showed that repertoire composition of White-rumped Shama in nature less than the sound which was trained and has repeat songs composed by the same type of repertoire composition. Comparison of song character White-rumped Shama in three different places in West Sumatra, those birds in Solok had the best quality of voice or song than Padang and Pariaman. It showed by higher repertoire composition in Solok.Keywords: repertoire composition, song characters, songbird, white-rumped shama
Procedia PDF Downloads 327602 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 350601 A Functional Analysis of a Political Leader in Terms of Marketing
Authors: Aşina Gülerarslan, M. Faik Özdengül
Abstract:
The new economic, social and political world order has led to the emergence of a wide range of persuasion strategies and practices based on an ever expanding marketing axis that involves organizations, ideas and persons as well as products and services. It is seen that since the 1990's, a wide variety of competitive marketing ideas have been offered systematically to target audiences in the field of politics as in other fields. When the components of marketing are taken into consideration, all kinds of communication efforts involving “political leaders”, who are conceptualized as products in terms of political marketing, serve a process of social persuasion, which cannot be restricted to election periods only, and a manageable “image”. In this context, image, which is concerned with how the political product is perceived, involves not only the political discourses shared with the public but also all kinds of biographical information about the leader, the leader’s specific way of living and routines and his/her attitudes and behaviors in their private lives, and all these are regarded as components of the “product image”. While on the one hand the leader’s verbal or supra-verbal references serve the way the “spirit of the product” is perceived –just as in brand positioning- they also show their self-esteem levels, in other words how they perceive themselves on the other hand. Indeed, their self-esteem levels are evaluated in three fundamental categories in the “Functional Analysis”, namely parent, child and adult, and it is revealed that the words, tone of voice and body language a person uses makes it easy to understand at what self-esteem level that person is. In this context, words, tone of voice and body language, which provide important clues as to the “self” of the person, are also an indication of how political leaders evaluate both “themselves” and “the mass/audience” in the communication they establish with their audiences. When the matter is taken from the perspective of Turkey, the levels of self-esteem in the relationships that the political leaders establish with the masses are also important in revealing how our society is seen from the perspective of a specific leader. Since the leader is a part of the marketing strategy of a political party as a product, this evaluation is significant in terms of the forms of relationships between political institutions in our country with the society. In this study, the self-esteem level in the documentary entitled “Master’s Story”, where Recep Tayyip Erdoğan’s life history is told, is analyzed in the context of words, tone of voice and body language. Within the scope of the study, at what level of self-esteem Recep Tayyip Erdoğan was in the “Master’s Story”, a documentary broadcast on Beyaz TV, was investigated using the content analysis method. First, based on the Functional Analysis Literature, a transactional approach scale was created regarding parent, adult and child self-esteem levels. On the basis of this scale, the prime minister’s self-esteem level was determined in three basic groups, namely “tone of voice”, “the words he used” and “body language”. Descriptive analyses were made to the data within the framework of these criteria and at what self-esteem level the prime minister spoke throughout the documentary was revealed.Keywords: political marketing, leader image, level of self-esteem, transactional approach
Procedia PDF Downloads 338600 Ariettes Oublieés of Claude Debussy: An Interpretive Approach of Two Songs of the Composer’s Compilation through a Comparative Study of Four Contemporary Recordings
Authors: Giannaki Natalia
Abstract:
This study examines the songs compilation of Claude Debussy Ariettes Oublieés for voice and piano and especially the songs C’est l’extase langoureuse and Chevaux des bois of the compilation in order to present some interpretational suggestions for the singer and the piano accompanist for a more complete knowledge of the style of French singing of this period. First, the historical frame of the French song (in which this compilation is integrated) is introduced, as well as the historical frame of this work, and then, the most predominant interpretational parameters of the impressionistic French song are presented from testimonies of Claude Debussy and his contemporaries. Moreover, a brief analysis of the verses that turned into music by Debussy from the collection of poems by the famous French poet Paul Verlaine for subsequent interpretative suggestions is integrated into the research. The purpose of this work is not to elucidate the work from a harmonic or morphological point of view. Instead, this research primarily attempts to delve into performance issues through a comparison of four contemporary recordings of the work, from which it will be proved whether the principles of impressionism that were established are respected and how they affect these songs, as well as how much the personal viewpoint of each interpreter intervenes. The latter intends to fill the research gap in the interpretation of Debussy's songs and to guide the performers. To conclude, it will be discovered whether there is any recording closest to a French song’s interpretation principles and how a complete interpretation of a French song should be.Keywords: Ariettes Oublieés, Claude Debussy, comparison, French song, impressionism, interpretation, performance practice, music performance, piano, recordings, singing, voice
Procedia PDF Downloads 94599 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops
Authors: Catalina Albornoz, Giacomo Barbieri
Abstract:
Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature
Procedia PDF Downloads 388598 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design
Procedia PDF Downloads 107597 Computer Science, Mass Communications, and Social Entrepreneurship: An Interdisciplinary Approach to Teaching Interactive Storytelling for the Greater Good
Authors: Susan Cardillo
Abstract:
This research will consider ways to bridge the gap between Computer Science and Media Communications and while doing so create Social Entrepreneurship for student success. New Media, as it has been referred to, is considered content available on-demand through Internet, a digital device, usually containing some kind of interactivity and creative participation. It is the interplay between technology, images, media and communications. The next generation of the newspaper, radio, television, and film students need to have a working knowledge of the technologies that are available for the creation of their work and taught to use this knowledge to create a voice. The work is interdisciplinary; in communications, we understand the necessity of reporting and disseminating information. In documentary film we understand the instructional and historic aspects of media and technology and in the non-profit sector, we see the need for expanding outlets for good. So, the true necessity is to utilize ‘new media’ technologies to advance social causes while reporting information, teaching and creating art. Goals: The goal of this research is to give communications students a better understanding of the technology that is both, currently at their disposal, and on the horizon, so that they can use it in their media, communications and art endeavors to be a voice for their generation. There is no longer a need to be a computer scientist to have a working knowledge of communication technologies and how they will benefit our work. There are many free and easy to use applications available for the creation of interactive communications. Methodology: This is Qualitative-Case Study that puts these ideas into action. There is a survey at the end of the experiment that is qualitative in nature and allows for the participants to share ideas and feelings about the technology and approach.Keywords: interactive storytelling, web documentary, mass communications, teaching
Procedia PDF Downloads 280596 Market Segmentation of Cruise Ship Passengers: Implications for Marketing of Local Products and Services at Destination Points
Authors: Gunnar Oskarsson, Irena Georgsdottir
Abstract:
Tourism has been growing incredibly fast during the past years, including the cruise industry, which is gaining increasing popularity among various groups of travelers. It is a challenging task for companies serving cruise ship passengers with local products and services at the point of destination to reach them in due time with information about their offerings, as well learning how to adapt their offerings and messages to the type of customers arriving on each particular occasion. Although some research has been conducted in this sphere, there is still limited knowledge about many specifics within this sector of the tourist industry. The objective of this research is to examine one of these, with the main goal of studying the segmentation of cruise passengers and to learn about marketing practices directed towards them. A qualitative research method, based on in-depth interviews, was used, as this provides an opportunity to gain insight into the participants’ perspectives. Interviews were conducted with 10 respondents from different companies in the tourist industry in Iceland, who interact with cruise passengers on a regular basis in their work environment. The main objective was to gain an understanding of what distinguishes different customer groups, or segments, in this industry, and of the marketing approaches directed towards them. The main findings reveal that participants note the strongest difference between cruise passengers of different nationalities, passengers coming on different ships (size and type), and passengers arriving at different times of the year. A drastic difference was noticed between nationalities in four main segments, American, British, Other European, and Asian customers, although some of these segments could be divided into even further sub-segments. Other important differencing factors were size and type of ships, quality or number of stars on the ship, and travelling time of the year. Companies serving cruise ship passengers, as well as the customers themselves, could benefit if the offerings of services were designed specifically for particular segments within the industry. Concerning marketing towards cruise passengers, the results indicate that it is carried out almost exclusively through the Internet using; a reliable website and, search engine optimization. Marketing is also by word-of-mouth. This research can assist practitioners by offering a deeper understanding of the approaches that may be effective in marketing local products and services to cruise ship passengers, based on their segmentation and by identifying effective ways to reach them. The research, furthermore, provides a valuable contribution to marketing knowledge for the benefit of an increasingly important market segment in a fast growing tourist industry.Keywords: capabilities, global integration, internationalisation, SMEs
Procedia PDF Downloads 401595 A Case Study Approach on Co-Constructing the Idea of 'Safety' with Children
Authors: Beng Zhen Yeow
Abstract:
In most work that involves children, the voice of the children is often not heard. This is ironic since a lot of discussions might involve their welfare and safety. It might seem natural that the professionals should hear from them about what they wish for instead of deciding what is best for them. However, this, unfortunately, might be more the exception than the norm in most case and hence in many instances, children are merely 'subjects' in conversations about safety instead of active participants in the construction or creation of safety in the family. There might be many reasons why it does not happen in our work. Firstly, professionals have learnt how to 'socialise' into their professional roles and hence in the process become 'un-childlike'. Secondly, there is also a lack of professional training with regards to how to talk with children. Finally, there might be also a lack of concrete tools and techniques that are developed to facilitate the process. In this paper, the case study method is used to show how the idea of safety could be concretised and discussed with children and their family members, and hence making them active participants and co-creators of their own safety. Specific skills and techniques are highlighted through the case study. In this case, there was improvement in outcomes like no repeated offence or abuse. In addition, children were also able to advocate for their own safety after six months of intervention and how the family members were able to explicitly say what they can do to improve safety. The professionals in the safety network reported significant improvements. On top of that, the abused child who was removed due to child protection concerns, had verbalized observations of change in mother’s parenting abilities, and has requested for home leave to begin due to ownership of safety planning and having confidence to co-create safety for her siblings and herself together with the professionals in the safety network. Children becoming active participants in the co-creation of safety not only serve the purpose in allowing them to own a 'voice' but at the same time, give them greater confidence to protect themselves at home and in other contexts outside of home.Keywords: partnering for safety, collaborative social work, family and systemic psychotherapy, child protection
Procedia PDF Downloads 120594 Investigations of Effective Marketing Metric Strategies: The Case of St. George Brewery Factory, Ethiopia
Authors: Mekdes Getu Chekol, Biniam Tedros Kahsay, Rahwa Berihu Haile
Abstract:
The main objective of this study is to investigate the marketing strategy practice in the Case of St. George Brewery Factory in Addis Ababa. One of the core activities in a Business Company to stay in business is having a well-developed marketing strategy. It assessed how the marketing strategies were practiced in the company to achieve its goals aligned with segmentation, target market, positioning, and the marketing mix elements to satisfy customer requirements. Using primary and secondary data, the study is conducted by using both qualitative and quantitative approaches. The primary data was collected through open and closed-ended questionnaires. Considering the size of the population is small, the selection of the respondents was carried out by using a census. The finding shows that the company used all the 4 Ps of the marketing mix elements in its marketing strategies and provided quality products at affordable prices by promoting its products by using high and effective advertising mechanisms. The product availability and accessibility are admirable with the practices of both direct and indirect distribution channels. On the other hand, the company has identified its target customers, and the company’s market segmentation practice is geographical location. Communication effectiveness between the marketing department and other departments is very good. The adjusted R2 model explains 61.6% of the marketing strategy practice variance by product, price, promotion, and place. The remaining 38.4% of variation in the dependent variable was explained by other factors not included in this study. The result reveals that all four independent variables, product, price, promotion, and place, have a positive beta sign, proving that predictor variables have a positive effect on that of the predicting dependent variable marketing strategy practice. Even though the marketing strategies of the company are effectively practiced, there are some problems that the company faces while implementing them. These are infrastructure problems, economic problems, intensive competition in the market, shortage of raw materials, seasonality of consumption, socio-cultural problems, and the time and cost of awareness creation for the customers. Finally, the authors suggest that the company better develop a long-range view and try to implement a more structured approach to attain information about potential customers, competitor’s actions, and market intelligence within the industry. In addition, we recommend conducting the study by increasing the sample size and including different marketing factors.Keywords: marketing strategy, market segmentation, target marketing, market positioning, marketing mix
Procedia PDF Downloads 61593 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 98592 Effect of Threshold Configuration on Accuracy in Upper Airway Analysis Using Cone Beam Computed Tomography
Authors: Saba Fahham, Supak Ngamsom, Suchaya Damrongsri
Abstract:
Objective: The objective is to determine the optimal threshold of Romexis software for the airway volume and minimum cross-section area (MCA) analysis using Image J as a gold standard. Materials and Methods: A total of ten cone-beam computed tomography (CBCT) images were collected. The airway volume and MCA of each patient were analyzed using the automatic airway segmentation function in the CBCT DICOM viewer (Romexis). Airway volume and MCA measurements were conducted on each CBCT sagittal view with fifteen different threshold values from the Romexis software, Ranging from 300 to 1000. Duplicate DICOM files, in axial view, were imported into Image J for concurrent airway volume and MCA analysis as the gold standard. The airway volume and MCA measured from Romexis and Image J were compared using a t-test with Bonferroni correction, and statistical significance was set at p<0.003. Results: Concerning airway volume, thresholds of 600 to 850 as well as 1000, exhibited results that were not significantly distinct from those obtained through Image J. Regarding MCA, employing thresholds from 400 to 850 within Romexis Viewer showed no variance from Image J. Notably, within the threshold range of 600 to 850, there were no statistically significant differences observed in both airway volume and MCA analyses, in comparison to Image J. Conclusion: This study demonstrated that the utilization of Planmeca Romexis Viewer 6.4.3.3 within threshold range of 600 to 850 yields airway volume and MCA measurements that exhibit no statistically significant variance in comparison to measurements obtained through Image J. This outcome holds implications for diagnosing upper airway obstructions and post-orthodontic surgical monitoring.Keywords: airway analysis, airway segmentation, cone beam computed tomography, threshold
Procedia PDF Downloads 44591 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 88590 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 160589 Voice of Customer: Mining Customers' Reviews on On-Line Car Community
Authors: Kim Dongwon, Yu Songjin
Abstract:
This study identifies the business value of VOC (Voice of Customer) on the business. Precisely, we intend to demonstrate how much negative and positive sentiment of VOC has an influence on car sales market share in the unites states. We extract 7 emotions such as sadness, shame, anger, fear, frustration, delight and satisfaction from the VOC data, 23,204 pieces of opinions, that had been posted on car-related on-line community from 2007 to 2009(a part of data collection from 2007 to 2015), and intend to clarify the correlation between negative and positive sentimental keywords and contribution to market share. In order to develop a lexicon for each category of negative and positive sentiment, we took advantage of Corpus program, Antconc 3.4.1.w and on-line sentimental data, SentiWordNet and identified the part of speech(POS) information of words in the customers' opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. For the purpose of this present study, a total of 45,741 pieces of customers' opinions of 28 car manufacturing companies had been collected including titles and status information. We conducted an experiment to examine whether the inclusion, frequency and intensity of terms with negative and positive emotions in each category affect the adoption of customer opinions for vehicle organizations' market share. In the experiment, we statistically verified that there is correlation between customer ideas containing negative and positive emotions and variation of marker share. Particularly, "Anger," a domain of negative domains, is significantly influential to car sales market share. The domain "Delight" and "Satisfaction" increased in proportion to growth of market share.Keywords: data mining, opinion mining, sentiment analysis, VOC
Procedia PDF Downloads 214588 Hallucinatory Activity in Schizophrenia: The Relationship with Childhood Memories, Submissive Behavior, Social Comparison, and Depression
Authors: Célia Barreto Carvalho, Carolina da Motta, José Pinto-Gouveia, Ermelindo Bernardo Peixoto
Abstract:
Auditory hallucinations among the most invalidating and distressing experiences reported by patients diagnosed with schizophrenia, leading to feelings of powerlessness and helplessness towards their illness. In more severe cases, these auditory hallucinations can take the form of commanding voices, which are often related to high suicidality rates in these patients. Several authors propose that the meanings attributed to the hallucinatory experience, rather than characteristics like form and content, can be determinant in patients’ reactions to hallucinatory activity, particularly in the case of voice-hearing experiences. In this study, 48 patients diagnosed with paranoid schizophrenia presenting auditory hallucinations were studied. Multiple regression analyses were computed to study the influence of several developmental aspects, such as family and social dynamics, bullying, depression, and socio-cognitive variables on the auditory hallucinations, on patients’ attributions and relationships with their voices, and on the resulting invalidation of hallucinatory experience. Overall, results showed how relationships with voices can mirror several aspects of interpersonal relationship with others, and how self-schemas, depression and actual social relationships help shaping the voice-hearing experience. Early experiences of victimization and submission help predict the attributions of omnipotence of the voices, and increased hostility from parents seems to increase the malevolence of the voices, suggesting that socio-cognitive factors can significantly contribute to the etiology and maintenance of auditory hallucinations. The understanding of the characteristics of auditory hallucinations and the relationships patients established with their voices can allow the development of more promising therapeutic interventions that can be more effective in decreasing invalidation caused by this devastating mental illness.Keywords: auditory hallucination, beliefs, life events, schizophrenia
Procedia PDF Downloads 451587 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients
Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho
Abstract:
Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper
Procedia PDF Downloads 146586 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 87585 Community Radio as a Catalyst for Local Empowerment and Development in Rivers State: A Case Study of Local Government Areas
Authors: Akpobome Harrison
Abstract:
Community radio serves as a potent vehicle for amplifying local voices and driving community progress worldwide. It facilitates grassroots communication, empowers residents, and significantly contributes to social, cultural, and economic development. This study investigates the pivotal roles of community radio in elevating local voices and advancing development within Emuoha, Obio-Akpor, and Ikwerre Local Government Areas in Rivers State. Employing a quantitative methodology, the research involved random sampling of respondents via questionnaires. The findings underscore the transformative power of community radio in promoting local voices and fostering development, particularly within Rivers State. Moreover, community radio platforms empower marginalized populations, providing them with a voice and an opportunity to actively participate in the media landscape, share their stories, and express their concerns. This empowerment holds the potential to enhance civic engagement and communal harmony. Community radio stations often prioritize local news, events, and subjects that may not receive adequate coverage in mainstream media, thus facilitating the dissemination of vital community information, including local news, weather updates, and emergency alerts. In light of these observations, this paper advocates for the encouragement of community radio by both the state government and private media entities to facilitate seamless information dissemination. Additionally, the paper highlights the significant role played by the use of Pidgin English as a communication tool, particularly in providing understanding and a voice to marginalized individuals in rural communities.Keywords: community radio, local voices, marginalized populations, information dissemination, pidgin english, grassroots communication
Procedia PDF Downloads 66584 Narrative Constructs and Environmental Engagement: A Textual Analysis of Climate Fiction’s Role in Shaping Sustainability Consciousness
Authors: Dean J. Hill
Abstract:
This paper undertakes the task of conducting an in-depth textual analysis of the cli-fi genre. It examines how writing in the genre contributes to expressing and facilitating the articulation of environmental consciousness through the form of narrative. The paper begins by situating cli-fi within the literary continuum of ecological narratives and identifying the unique textual characteristics and thematic preoccupations of this area. The paper unfolds how cli-fi transforms the esoteric nature of climate science into credible narrative forms by drawing on language use, metaphorical constructs, and narrative framing. It also involves how descriptive and figurative language in the description of nature and disaster makes climate change so vivid and emotionally resonant. The work also points out the dialogic nature of cli-fi, whereby the characters and the narrators experience inner disputes in the novel regarding the ethical dilemma of environmental destruction, thus demanding the readers challenge and re-evaluate their standpoints on sustainability and ecological responsibilities. The paper proceeds with analysing the feature of narrative voice and its role in eliciting empathy, as well as reader involvement with the ecological material. In looking at how different narratorial perspectives contribute to the emotional and cognitive reaction of the reader to text, this study demonstrates the profound power of perspective in developing intimacy with the dominating concerns. Finally, the emotional arc of cli-fi narratives, running its course over themes of loss, hope, and resilience, is analysed in relation to how these elements function to marshal public feeling and discourse into action around climate change. Therefore, we can say that the complexity of the text in the cli-fi not only shows the hard edge of the reality of climate change but also influences public perception and behaviour toward a more sustainable future.Keywords: cli-fi genre, ecological narratives, emotional arc, narrative voice, public perception
Procedia PDF Downloads 31583 Competitor Integration with Voice of Customer Ratings in QFD Studies Using Geometric Mean Based on AHP
Authors: Zafar Iqbal, Nigel P. Grigg, K. Govindaraju, Nicola M. Campbell-Allen
Abstract:
Quality Function Deployment (QFD) is structured approach. It has been used to improve the quality of products and process in a wide range of fields. Using this systematic tool, practitioners normally rank Voice of Customer ratings (VoCs) in order to produce Improvement Ratios (IRs) which become the basis for prioritising process / product design or improvement activities. In one matrix of the House of Quality (HOQ) competitors are rated. The method of obtaining improvement ratios (IRs) does not always integrate the competitors’ rating in a systematic way that fully utilises competitor rating information. This can have the effect of diverting QFD practitioners’ attention from a potentially important VOC to less important VOC. In order to enhance QFD analysis, we present a more systematic method for integrating competitor ratings, utilising the geometric mean of the customer rating matrix. In this paper we develop a new approach, based on the Analytic Hierarchy Process (AHP), in which we generating a matrix of multiple comparisons of all competitors, and derive a geometric mean for each competitor. For each VOC an improved IR is derived which-we argue herein - enhances the initial VOC importance ratings by integrating more information about competitor performance. In this way, our method can help overcome one of the possible shortcomings of QFD. We then use a published QFD example from literature as a case study to demonstrate the use of the new AHP-based IRs, and show how these can be used to re-rank existing VOCs to -arguably- better achieve the goal of customer satisfaction in relation VOC ratings and competitors’ rankings. We demonstrate how two dimensional AHP-based geometric mean derived from the multiple competitor comparisons matrix can be useful for analysing competitors’ rankings. Our method utilises an established methodology (AHP) applied within an established application (QFD), but in an original way (through the competitor analysis matrix), to achieve a novel improvement.Keywords: quality function deployment, geometric mean, improvement ratio, AHP, competitors ratings
Procedia PDF Downloads 368582 Graphic User Interface Design Principles for Designing Augmented Reality Applications
Authors: Afshan Ejaz, Syed Asim Ali
Abstract:
The reality is a combination of perception, reconstruction, and interaction. Augmented Reality is the advancement that layer over consistent everyday existence which includes content based interface, voice-based interfaces, voice-based interface and guide based or gesture-based interfaces, so designing augmented reality application interfaces is a difficult task for the maker. Designing a user interface which is not only easy to use and easy to learn but its more interactive and self-explanatory which have high perceived affordability, perceived usefulness, consistency and high discoverability so that the user could easily recognized and understand the design. For this purpose, a lot of interface design principles such as learnability, Affordance, Simplicity, Memorability, Feedback, Visibility, Flexibly and others are introduced but there no such principles which explain the most appropriate interface design principles for designing an Augmented Reality application interfaces. Therefore, the basic goal of introducing design principles for Augmented Reality application interfaces is to match the user efforts and the computer display (‘plot user input onto computer output’) using an appropriate interface action symbol (‘metaphors’) or to make that application easy to use, easy to understand and easy to discover. In this study by observing Augmented reality system and interfaces, few of well-known design principle related to GUI (‘user-centered design’) are identify and through them, few issues are shown which can be determined through the design principles. With the help of multiple studies, our study suggests different interface design principles which makes designing Augmented Reality application interface more easier and more helpful for the maker as these principles make the interface more interactive, learnable and more usable. To accomplish and test our finding, Pokémon Go an Augmented Reality game was selected and all the suggested principles are implement and test on its interface. From the results, our study concludes that our identified principles are most important principles while developing and testing any Augmented Reality application interface.Keywords: GUI, augmented reality, metaphors, affordance, perception, satisfaction, cognitive burden
Procedia PDF Downloads 169581 Mikrophonie I (1964) by Karlheinz Stockhausen - Between Idea and Auditory Image
Authors: Justyna Humięcka-Jakubowska
Abstract:
1. Background in music analysis. Traditionally, when we think about a composer’s sketches, the chances are that we are thinking in terms of the working out of detail, rather than the evolution of an overall concept. Since music is a “time art’, it follows that questions of a form cannot be entirely detached from considerations of time. One could say that composers tend to regard time either as a place gradually and partially intuitively filled, or they can look for a specific strategy to occupy it. In my opinion, one thing that sheds light on Stockhausen's compositional thinking is his frequent use of 'form schemas', that is often a single-page representation of the entire structure of a piece. 2. Background in music technology. Sonic Visualiser is a program used to study a musical recording. It is an open source application for viewing, analysing, and annotating music audio files. It contains a number of visualisation tools, which are designed with useful default parameters for musical analysis. Additionally, the Vamp plugin format of SV supports to provide analysis such as for example structural segmentation. 3. Aims. The aim of my paper is to show how SV may be used to obtain a better understanding of the specific musical work, and how the compositional strategy does impact on musical structures and musical surfaces. I want to show that ‘traditional” music analytic methods don’t allow to indicate interrelationships between musical surface (which is perceived) and underlying musical/acoustical structure. 4. Main Contribution. Stockhausen had dealt with the most diverse musical problems by the most varied methods. A characteristic which he had never ceased to be placed at the center of his thought and works, it was the quest for a new balance founded upon an acute connection between speculation and intuition. In the case with Mikrophonie I (1964) for tam-tam and 6 players Stockhausen makes a distinction between the "connection scheme", which indicates the ground rules underlying all versions, and the form scheme, which is associated with a particular version. The preface to the published score includes both the connection scheme, and a single instance of a "form scheme", which is what one can hear on the CD recording. In the current study, the insight into the compositional strategy chosen by Stockhausen was been compared with auditory image, that is, with the perceived musical surface. Stockhausen's musical work is analyzed both in terms of melodic/voice and timbre evolution. 5. Implications The current study shows how musical structures have determined of musical surface. My general assumption is this, that while listening to music we can extract basic kinds of musical information from musical surfaces. It is shown that an interactive strategies of musical structure analysis can offer a very fruitful way of looking directly into certain structural features of music.Keywords: automated analysis, composer's strategy, mikrophonie I, musical surface, stockhausen
Procedia PDF Downloads 297580 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM
Procedia PDF Downloads 116579 Teacher Knowledge: Unbridling Teacher Agency in the Context of Professional Development for Transformative Teaching and Learning
Authors: Bernice Badal
Abstract:
This article addresses a persistent challenge related to teacher agency in knowledge acquisition in professional development (PD) workshops in contexts of educational change, given that scholarship identifies a need for more teacher involvement and amplification of teacher's voices. Theoretical concepts are drawn from Bandura’s Social cognitive theory, incorporating the triadic causation model of agency to examine the reciprocal nature of the context, teacher characteristics, and systemic influences that shape how knowledge is transmitted and acquired in PD workshops. This qualitative study, using a mix of classroom observations and interviews, explored the political, contextual, and personal characteristics of teacher agency in PD through an analysis of data extracted from a PhD study. The narratives of six teachers from three township schools are examined to show how PD efforts in South Africa have failed to take account of the holistic development of teacher agency in knowledge dissemination and how this shapes teacher self-efficacy beliefs about being able to masterfully apply the tenets of the reform. Agency, teacher voice, and contextual considerations were used as markers of the quality of the training provided to understand how knowledge is acquired and meaning is made. The findings suggest that systemic influences of institutionally imposed PD offer partial understandings of the reform, which is offered in traditional formats that do not consider teacher empowerment in knowledge production and the development of teacher agency. Common in all the participants’ responses is the need for more information and training on the prescribed approach for teaching English as a second language; however, this paper holds the view that more information may not solve teachers’ dilemmas. Accordingly, it recommends a restructuring of the programme with facilitators being more cognisant of teacher agency for the development of transformative teachers. The findings of the study contribute to the field of teacher knowledge, teacher training, and professional development in the context of educational reforms.Keywords: teacher professional development, teacher voice, teacher agency, educational reforms, teacher knowledge
Procedia PDF Downloads 70578 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model
Authors: Shivahari Revathi Venkateswaran
Abstract:
Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering
Procedia PDF Downloads 71577 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 134576 Arabic Light Word Analyser: Roles with Deep Learning Approach
Authors: Mohammed Abu Shquier
Abstract:
This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN
Procedia PDF Downloads 42575 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 555