Search results for: laser powder bed fusion (LPBF)
1877 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli
Procedia PDF Downloads 3501876 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites
Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park
Abstract:
This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter
Procedia PDF Downloads 3611875 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application
Authors: Jeff Moussodji, Dominique Drouin
Abstract:
The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling
Procedia PDF Downloads 2141874 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy
Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev
Abstract:
In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit
Procedia PDF Downloads 3131873 Somatic Hybridization of between Citrus and Murraya paniculata Cells Applied by Electro-Fusion
Authors: Hasan Basri Jumin
Abstract:
Protoplasts isolated from embryogenic callus of Citrus sinensis were electrically used with mesophyll protoplasts isolated from seedless Citrus relatives. Hybrid of somatic embryos plantlets was obtained after 7 months of culture. Somatic hybrid plants were regenerated into normal seedlings and successfully transferred to soil after strictly acclimatization in the glass pot. The somatic hybrid plants were obtained by screening on the basis of chromosomes count. The number of chromosome of root tip counting revealed plantlets tetraploids (2n = 4x = 36) and the other were diploids (2n = 2x = 18) morphologically resembling the mesophyll parent. This somatic hybrid will be utilized as a possible pollen parent for improving the Citrus sinensis. A complete protoplast-to-plant system of somatic hybrid was developed for Citrus sinensis and Citrus relatives which could facilitate the transfer of nuclear and cytoplasmic genes from this species into cultivated Citrus through protoplast fusion.Keywords: chromosome, Murraya paniculata, protoplast fusion, somatic hybrid, tetrapoliod
Procedia PDF Downloads 3451872 Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique
Authors: Amessalu Atenafu Gelaw, Nele Rath
Abstract:
Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured.Keywords: absorptivity, fiber reinforced matrix, laser hardening, Nd:YAG laser
Procedia PDF Downloads 1631871 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite
Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek
Abstract:
Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties
Procedia PDF Downloads 3661870 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant
Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi
Abstract:
To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia
Procedia PDF Downloads 3011869 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF
Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda
Abstract:
Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity
Procedia PDF Downloads 4971868 Non-Contact Digital Music Instrument Using Light Sensing Technology
Authors: Aishwarya Ravichandra, Kirtana Kirtivasan, Adithi Mahesh, Ashwini S.Savanth
Abstract:
A Non-Contact Digital Music System has been conceptualized and implemented to create a new era of digital music. This system replaces the strings of a traditional stringed instrument with laser beams to avoid bruising of the user’s hand. The system consists of seven laser modules, detector modules and distance sensors that form the basic hardware blocks of this instrument. Arduino ATmega2560 microcontroller is used as the primary interface between the hardware and the software. MIDI (Musical Instrument Digital Interface) is used as the protocol to establish communication between the instrument and the virtual synthesizer software.Keywords: Arduino, detector, laser, MIDI, note on, note off, pitch bend, Sharp IR distance sensor
Procedia PDF Downloads 4151867 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 531866 Comparison of Er:YAG Laser with Bur Prepared Cavities: A Systematic Review
Authors: Sarina Sahmeddini, Fahimeh Safarpour, Forough Pazhuheian
Abstract:
With the concepts of minimally invasive treatment and preventive dentistry gaining more and more recognition by dentists, there are many published clinical trials comparing the use of the erbium laser with traditional drilling for caries removal. However, the efficacy of the erbium laser is still controversial. The aim of this review study is to compare the effects of tooth preparation by laser irradiation and conventional preparation by bur to identify the best means for cavity preparation and reduction of recurrent caries. Randomized controlled trials, controlled clinical trials, and prospective, and retrospective cohort studies were included in this review. The eligibility criteria included studies in humans’ permanent teeth in which cavities were conducted in their cervical third and proximal surfaces. PubMed, Google scholar, and Scopus about Er:YAG laser and bur prepared cavities were carried out. The studies’ details were organized in four tables according to the groups: (1) Microleakage; (2) Morphological changes; (3) Microhardness; and (4) Bond strength. The initial search resulted in 134 articles, 12 studies published from 2012 up to March 2020 were included in this review. According to the risk of bias evaluation, all studies were classified as high quality. Clinical implications: Er:YAG lasers with the energy levels between 250 to 300 mJ can be proper alternatives to conventional burs, as minimal invasive instruments with no significant differences or better results in microleakage, microhardness, and bond strength compared with conventional burs. In conclusion, Er:YAG laser irradiations accompanied by phosphoric acid etching can reduce the chance of recurrent carries.Keywords: lasers, drilling, caries, micro leakage
Procedia PDF Downloads 1371865 Effect of Low Level Laser Therapy versus Polarized Light Therapy on Oral Mucositis in Cancer Patients Receiving Chemotherapy
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
The goal of this study is to compare the efficacy of polarised light therapy with low-intensity laser therapy in treating oral mucositis brought on by chemotherapy in cancer patients. Evaluation procedures are the measurement of the WHO oral mucositis scale and the Common toxicity criteria scale. Techniques: Cancer patients (men and women) who had oral mucositis, ulceration, and discomfort and whose ages varied from 30 to 55 years were separated into two groups and received 40 chemotherapy treatments. Twenty patients in Group (A) received low-level laser therapy (LLLT) along with their regular oral mucositis medication treatment, while twenty patients in Group (B) received Bioptron light therapy (BLT) along with their regular oral mucositis medication treatment. Both treatments were applied for 10 minutes each day for 30 days. Conclusion and results: This study showed that the use of both BLT and LLLT on oral mucositis in cancer patients following chemotherapy greatly improved, as seen by the sharp falls in both the WHO oral mucositis scale (OMS) and the common toxicity criteria scale (CTCS). However, low-intensity laser therapy (LLLT) was superior to Bioptron light therapy in terms of benefits (BLT).Keywords: Bioptron light therapy, low level laser therapy, oral mucositis, WHO oral mucositis scale, common toxicity criteria scale
Procedia PDF Downloads 2511864 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics
Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri
Abstract:
This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles
Procedia PDF Downloads 1521863 Dynamics of Light Induced Current in 1D Coupled Quantum Dots
Authors: Tokuei Sako
Abstract:
Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation
Procedia PDF Downloads 3601862 Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes
Authors: Maria V. Morozova, Zoya A. Mikhaylovskaya, Elena S. Buyanova, Sofia A. Petrova, Ksenia V. Arishina, Robert G. Zaharov
Abstract:
The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi₂₆-₂ₓMn₂ₓMo₁₀O₆₉-d and Bi₂₆Mo₁₀-₂yMn₂yO₆₉-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method.Keywords: bismuth molybdate, columnar structures, impedance spectroscopy, oxygen ionic conductors
Procedia PDF Downloads 4401861 Nanotechnology-Based Treatment of Liver Cancer
Authors: Lucian Mocan
Abstract:
We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.Keywords: HepG2 cells, gold nanoparticles, nanoparticle functionalization, laser irradiation
Procedia PDF Downloads 3711860 Herbal Based Fingerprint Powder Formulation for Latent Fingermark Visualization: Catechu (Kattha)
Authors: Pallavi Thakur, Rakesh K. Garg
Abstract:
Latent fingerprints are commonly encountered evidence at the scene of the crime. It is very important to decipher these fingerprints in order to explore their identity and a lot of research has been made on the visualization of latent fingermarks on various substrates by numerous researchers. During the past few years large number of powder formulations has been evolved for the development of latent fingermarks on different surfaces. This paper reports a new and simple fingerprint powder which is non-toxic and has been employed on different substrates successfully for the development and visualization of latent fingermarks upto the time period of twelve days in varying temperature conditions. In this study, a less expensive, simple and easily available catechu (kattha) powder has been used to decipher the latent fingermarks on different substrates namely glass, plastic, metal, aluminium foil, white paper, wall tile and wooden sheet. It is observed that it gives very clear results on all the mentioned substrates and can be successfully used for the development and visualization of twelve days old latent fingermarks in varying temperature conditions on wall tiles.Keywords: fingermarks, catechu, visualization, aged fingermarks
Procedia PDF Downloads 1941859 Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors.Keywords: Landsat ETM+, EO1, data fusion, vegetation, Tassili, Algeria
Procedia PDF Downloads 4371858 Modelling and Optimization of Laser Cutting Operations
Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail
Abstract:
Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE
Procedia PDF Downloads 6251857 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface
Authors: Amnon Shirizly, Ohad Dolev
Abstract:
In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed
Procedia PDF Downloads 1091856 Magnetodielectric Studies of Substituted La₂NiMnO₆ Double Perovskites
Authors: Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shriniwas B. Kulkarni
Abstract:
The La₂NiMnO₆ has been extensively studied for its ferromagnetic and magneto-dielectric properties. The La₂NiMnO₆ double perovskite is modified by partial substitution at B site by Fe transition metal. The La₂Ni₁₋ₓFeₓMnO₆ powder samples were synthesized by hydroxide co-precipitation method. The precipitate was dried and fine griended to form powder and pellet samples (2cm dia.) using hydraulic press. The powder and pellet samples of La₂Ni₁₋ₓFeₓMnO₆ were calcined at high temperature 1200°C to form a pure and stable composition. The nano polar regions (NPR) around Ni²⁺ or Mn⁴⁺ ions due to the cationic antisite disorder gives dielectric relaxation through their mutual interaction. The magneto-dielectric behavior is observed in substituted La₂NiMnO₆ shows Maxwell-Wagner and Debye relaxation due to grain boundary, interface and antisite defects. The magneto-dielectric properties of substituted La₂NiMnO₆ pellet sample were probed by Impedance spectroscopy measurements. The structural and magnetic investigations were also carried out by XRD, FESEM and VSM measurements of substituted La₂NiMnO₆ of powder samples. The synthesized La₂Ni₁₋ₓFeₓMnO₆ powder samples are polycrystalline and ferromagnetic in nature. The La₂Ni₁₋ₓFeₓMnO₆ samples exhibit ferromagnetic disorder with transition temperature near room temperature.Keywords: La₂NiMnO₆, nano polar regions (NPR), antisite defects, magnetodielctric
Procedia PDF Downloads 2191855 Effect of Garlic Powder Extract on Fungi Isolated from Diseased Irish Potato in Bokkos, Plateau State Nigeria
Authors: Musa Filibus Gugu
Abstract:
An investigation was carried out on the effect of garlic powder extract on fungi associated with Irish potato rot in Bokkos, Plateau State, Nigeria. Diseased Irish potatoes were randomly collected from three markets in the study location and fungal species isolated. Isolated fungal species were Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans. Frequency of occurrence for Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans was 10%, 34%, and 56%, respectively, using sabauraud dextrose agar, after incubation for 4-7 days. Treatment of Pytophthora infestans with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 92%, 68%, 32% and 10% inhibition zones, respectively. Fusarium culmorum showed 100%, 90%, 40%, 9% and 0% inhibition zones when treated with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml, respectively. Garlic powder extract concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 98%, 55%, 30%, 0% inhibition zones, respectively on Fusarium oxysporum. Hence, Restriction of the radial growth of the fungal colonies suggests a good antifungal effect of garlic extract. This can be integrated into the treatment of fungal diseases of Irish potato in Bokkos, Nigeria, as this will help to reduce the indiscriminate use of fungicides, especially in an environment with a struggling economy.Keywords: fungal rot, garlic extract, inhibition zone, Irish potato
Procedia PDF Downloads 1491854 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children
Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik
Abstract:
The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.Keywords: ADHD children, instant surabi, soybean, torbangun
Procedia PDF Downloads 1541853 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools
Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus
Abstract:
Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects
Procedia PDF Downloads 2681852 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy
Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda
Abstract:
Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability
Procedia PDF Downloads 2561851 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii
Authors: Dake Xiong, Ben Hankamer, Ian Ross
Abstract:
The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase
Procedia PDF Downloads 2661850 The Effectiveness of Copegus (Ribavirin) Placed in a Field of Unexplored Properties of Low-Level Laser Radiation in the Treatment of Long-Covid Syndrome
Authors: Naylya Djumaeva
Abstract:
Since the end of 2019, the world has been shaken by an infection that has claimed the lives of more than six and a half million patients. Currently, SARS-CoV-2 not only causes acute damage but has long-term consequences affecting every organ and has brought a wave of a new chronic disabling condition called Long-Covid..This preliminary study describes an application of un-explored properties of low-level laser radiation with laser- light emitter in the field of which is placed Copegus (Ribavirin) with the aim of treatment of patients with Long-Covid syndrome. The difference from the traditional use of the drug is that Copegus was not prescribed to the patient by the traditional method - orally or intravenously, and the medicinal properties of the drug were introduced into the patient’s body using the un-explored properties of low-power laser radiation. Ninety eight patients with Long- Covid syndrome were observed. The obtained findings suggest that under the influence of the field formed into the laser- light emitter with a Copegus placed inside the field, the remote transfer of pharmacological properties of Сopegus occurs. Conclusions about the produced effect of exposure were made based on improvement in the condition of patients, the disappearance of complaints, and positive changes in various diagnostic tests performed by the patients. Biography: Djumaeva N completed her PhD from the Institute of Epidemiology, Microbiology and Infectious Diseases in 2000. In her dissertation work devoted to the treatment of patients with chronic hepatitis B virus infection, she presented data on the possible influence of Complex Homeopathic Preparations on the organization of bound intracellular water in the cells of the body. She is the Consultant (Neurologist) at the Scientific-Research Institute for Virology, Uzbekistan, and an expert in “medicament testing” method (30 years). She has published 43 papers, including 2 patents.Keywords: long covid, low level laser, copegus, laser- light emmiter
Procedia PDF Downloads 981849 Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser
Authors: Marilou Cadatal-Raduban, Minh Hong Pham, Duong Van Pham, Tu Nguyen Xuan, Mui Viet Luong, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Hung Dai Nguyen
Abstract:
There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media.Keywords: rare-earth-doped fluoride gain medium, transient cavity, ultrashort laser, ultraviolet laser
Procedia PDF Downloads 3611848 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration
Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang
Abstract:
The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability
Procedia PDF Downloads 348