Search results for: integer transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1680

Search results for: integer transform

1350 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 471
1349 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 400
1348 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 411
1347 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 242
1346 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 53
1345 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion

Authors: Francys Souza, Alberto Ohashi, Dorival Leao

Abstract:

We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.

Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation

Procedia PDF Downloads 154
1344 Niftiness of the COLME to Promote Shared Decision-Making in Organizations

Authors: Prakash Singh

Abstract:

The question that arises is whether a theory such as the Collegial Leadership Model of Emancipation (COLME) has the potency to introduce leadership change by empowering and emancipating their employees. It is a fallacy to simply assume that experience alone, in the absence of theory, will contribute to this knowledge base to develop collegial leaders. The focus of this study is to therefore ascertain whether the COLME can serve as a conceptual framework to transform traditional bureaucratic management practices (TBMPs) in order to promote shared decision-making in organizations such as schools. All the respondents in this exploratory qualitative study embraced collegiality to transform TBMPs in their organizations. For the positive effects to be sustained, the collegial practices need to be evolutionary and emancipatory in order to evoke the values of collegial leadership as elucidated by the findings of this study. Interviewees affirmed that the COLME provides an astute framework to develop commendable collegial leadership practices as it clearly outlines procedures to develop and use the leadership potential of all the employees in order to foster joint accountability. They acknowledged that when the principles of collegiality are flexibly applied, they contribute to the creation of a holistic milieu in which all employees are able to express themselves freely, without fear of failure, and thus feel that they are part of the democratic decision-making process. Evidently, a conceptual framework such as the COLME can serve as a benchmark for leadership effectiveness because organizational outcomes need to be measured against standards of excellence in meeting both employee and customer expectations.

Keywords: collegial leadership model, employee empowerment, shared decision-making, traditional bureaucratic management practices

Procedia PDF Downloads 468
1343 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 113
1342 A New Tactical Optimization Model for Bioenergy Supply Chain

Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon

Abstract:

Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.

Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels

Procedia PDF Downloads 491
1341 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 59
1340 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 56
1339 Fractional-Order PI Controller Tuning Rules for Cascade Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

Keywords: Bode’s ideal transfer function, fractional calculus, fractional–order proportional integral (FOPI) controller, cascade control system

Procedia PDF Downloads 352
1338 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 77
1337 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 394
1336 Preceramic Polymers Formulations for Potential Additive Manufacturing

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.

Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10

Procedia PDF Downloads 102
1335 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection

Authors: Jiayuan Wu. Lu Hu

Abstract:

With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.

Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm

Procedia PDF Downloads 109
1334 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.

Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering

Procedia PDF Downloads 413
1333 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform

Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry

Abstract:

The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.

Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems

Procedia PDF Downloads 461
1332 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 79
1331 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform

Procedia PDF Downloads 195
1330 A Novel Integration of Berth Allocation, Quay Cranes and Trucks Scheduling Problems in Container Terminals

Authors: M. Moharami Gargari, S. Javdani Zamani, A. Mohammadnejad, S. Abuali

Abstract:

As maritime container transport is developing fast, the need arises for efficient operations at container terminals. One of the most important determinants of container handling efficiency is the productivity of quay cranes and internal transportation vehicles, which are responsible transporting of containers for unloading and loading operations for container vessels. For this reason, this paper presents an integrated mathematical model formulation for discrete berths with quay cranes and internal transportations vehicles. The problems have received increasing attention in the literature and the present paper deals with the integration of these interrelated problems. A new mixed integer linear formulation is developed for the Berth Allocation Problem (BAP), Quay Crane Assignment and Scheduling Problem (QCASP) and Internal Transportation Scheduling (ITS), which accounts for cranes and trucks positioning conditions.

Keywords: discrete berths, container terminal, truck scheduling, dynamic vessel arrival

Procedia PDF Downloads 376
1329 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 142
1328 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform

Procedia PDF Downloads 110
1327 A Quantitative Study on the Effects of School Development on Character Development

Authors: Merve Gücen

Abstract:

One of the aims of education is to educate individuals who have embraced universal moral principles and transform universal moral principles into moral values. Character education aims to educate behaviors of individuals in their mental activities to transform moral principles into moral values in their lives. As the result of this education, individuals are expected to develop positive character traits and become morally indifferent individuals. What are the characteristics of the factors that influence character education at this stage? How should character education help individuals develop positive character traits? Which methods are more effective? These questions come to mind when studying character education. Our research was developed within the framework of these questions. The aim of our study is to provide the most effective use of the education factor that affects character. In this context, we tried to explain character definition, character development, character education and the factors affecting character education using qualitative research methods. At this stage, character education programs applied in various countries were examined and a character education program consisting of Islamic values was prepared and implemented in an International Imam Hatip High School in Istanbul. Our application was carried out with the collaboration of school and families. Various seminars were organized in the school and participation of families was ensured. In the last phase of our study, we worked with the students and their families on the effectiveness of the events held during the program. In this study, it was found that activities such as storytelling and theater in character education programs were effective in recognizing wrong behaviors in individuals. It was determined that our program had a positive effect on the quality of education. It was seen that applications of this educational program affected the behavior of the employees in the educational institution.

Keywords: character development, family activities, values education, education program

Procedia PDF Downloads 148
1326 Precoding-Assisted Frequency Division Multiple Access Transmission Scheme: A Cyclic Prefixes- Available Modulation-Based Filter Bank Multi-Carrier Technique

Authors: Ying Wang, Jianhong Xiang, Yu Zhong

Abstract:

The offset Quadrature Amplitude Modulation-based Filter Bank Multi-Carrier (FBMC) system provides superior spectral properties over Orthogonal Frequency Division Multiplexing. However, seriously affected by imaginary interference, its performances are hampered in many areas. In this paper, we propose a Precoding-Assisted Frequency Division Multiple Access (PA-FDMA) modulation scheme. By spreading FBMC symbols into the frequency domain and transmitting them with a precoding matrix, the impact of imaginary interference can be eliminated. Specifically, we first generate the coding pre-solution matrix with a nonuniform Fast Fourier Transform and pick the best columns by introducing auxiliary factors. Secondly, according to the column indexes, we obtain the precoding matrix for one symbol and impose scaling factors to ensure that the power is approximately constant throughout the transmission time. Finally, we map the precoding matrix of one symbol to multiple symbols and transmit multiple data frames, thus achieving frequency-division multiple access. Additionally, observing the interference between adjacent frames, we mitigate them by adding frequency Cyclic Prefixes (CP) and evaluating them with a signal-to-interference ratio. Note that PA-FDMA can be considered a CP-available FBMC technique because the underlying strategy is FBMC. Simulation results show that the proposed scheme has better performance compared to Single Carrier Frequency Division Multiple Access (SC-FDMA), etc.

Keywords: PA-FDMA, SC-FDMA, FBMC, non-uniform fast fourier transform

Procedia PDF Downloads 30
1325 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)

Authors: Eliane G. Tótoli, Hérida Regina N. Salgado

Abstract:

Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.

Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region

Procedia PDF Downloads 358
1324 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045

Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt

Abstract:

To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.

Keywords: 100% renewable electricity, California, capacity expansion, mixed integer non-linear programming

Procedia PDF Downloads 150
1323 A Mathematical Model for a Two-Stage Assembly Flow-Shop Scheduling Problem with Batch Delivery System

Authors: Saeedeh Ahmadi Basir, Mohammad Mahdavi Mazdeh, Mohammad Namakshenas

Abstract:

Manufacturers often dispatch jobs in batches to reduce delivery costs. However, sending several jobs in batches can have a negative effect on other scheduling-related objective functions such as minimizing the number of tardy jobs which is often used to rate managers’ performance in many manufacturing environments. This paper aims to minimize the number of weighted tardy jobs and the sum of delivery costs of a two-stage assembly flow-shop problem in a batch delivery system. We present a mixed-integer linear programming (MILP) model to solve the problem. As this is an MILP model, the commercial solver (the CPLEX solver) is not guaranteed to find the optimal solution for large-size problems at a reasonable amount of time. We present several numerical examples to confirm the accuracy of the model.

Keywords: scheduling, two-stage assembly flow-shop, tardy jobs, batched delivery system

Procedia PDF Downloads 436
1322 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 232
1321 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search

Procedia PDF Downloads 249