Search results for: imputation method of missing data
38234 Implementation Association Rule Method in Determining the Layout of Qita Supermarket as a Strategy in the Competitive Retail Industry in Indonesia
Authors: Dwipa Rizki Utama, Hanief Ibrahim
Abstract:
The development of industry retail in Indonesia is very fast, various strategy was undertaken to boost the customer satisfaction and the productivity purchases to boost the profit, one of which is implementing strategies layout. The purpose of this study is to determine the layout of Qita supermarket, a retail industry in Indonesia, in order to improve customer satisfaction and to maximize the rate of products’ sale as a whole, so as the infrequently purchased products will be purchased. This research uses a literature study method, and one of the data mining methods is association rule which applied in market basket analysis. Data were tested amounted 100 from 160 after pre-processing data, so then the distribution department and 26 departments corresponding to the data previous layout will be obtained. From those data, by the association rule method, customer behavior when purchasing items simultaneously can be studied, so then the layout of the supermarket based on customer behavior can be determined. Using the rapid miner software by the minimal support 25% and minimal confidence 30% showed that the 14th department purchased at the same time with department 10, 21st department purchased at the same time with department 13, 15th department purchased at the same time with department 12, 14th department purchased at the same time with department 12, and 10th department purchased at the same time with department 14. From those results, a better supermarket layout can be arranged than the previous layout.Keywords: industry retail, strategy, association rule, supermarket
Procedia PDF Downloads 18938233 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 49338232 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology
Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada
Abstract:
Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.Keywords: FNA, hail, histopathology, thyroid
Procedia PDF Downloads 33638231 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 8338230 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 37138229 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 34238228 An Improved Parallel Algorithm of Decision Tree
Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng
Abstract:
Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.Keywords: classification, Gini index, parallel data mining, pruning ahead
Procedia PDF Downloads 12438227 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37538226 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 68638225 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform
Authors: Ali A. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 50138224 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 23738223 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach
Abstract:
Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent
Procedia PDF Downloads 16138222 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 19338221 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems
Authors: Yong-Kyu Jung
Abstract:
The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity
Procedia PDF Downloads 8038220 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 25538219 Improving the Performance of Requisition Document Online System for Royal Thai Army by Using Time Series Model
Authors: D. Prangchumpol
Abstract:
This research presents a forecasting method of requisition document demands for Military units by using Exponential Smoothing methods to analyze data. The data used in the forecast is an actual data requisition document of The Adjutant General Department. The results of the forecasting model to forecast the requisition of the document found that Holt–Winters’ trend and seasonality method of α=0.1, β=0, γ=0 is appropriate and matches for requisition of documents. In addition, the researcher has developed a requisition online system to improve the performance of requisition documents of The Adjutant General Department, and also ensuring that the operation can be checked.Keywords: requisition, holt–winters, time series, royal thai army
Procedia PDF Downloads 30838218 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 43438217 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation
Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang
Abstract:
This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response
Procedia PDF Downloads 39538216 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 38338215 Research on Hangzhou Commercial Center System Based on Point of Interest Data
Authors: Chen Wang, Qiuxiao Chen
Abstract:
With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.Keywords: business center system, business format, main city of Hangzhou, POI extraction method
Procedia PDF Downloads 14038214 Incorporating Moving Authority Limits Into Driving Advice
Authors: Peng Zhou, Peter Pudney
Abstract:
Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation
Procedia PDF Downloads 1538213 Applications of Probabilistic Interpolation via Orthogonal Matrices
Authors: Dariusz Jacek Jakóbczak
Abstract:
Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR) is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction.Keywords: 2D data interpolation, hurwitz-radon matrices, MHR method, probabilistic modeling, curve extrapolation
Procedia PDF Downloads 52638212 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 36838211 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations
Authors: Yanjie Zhu, André Jesus, Irwanda Laory
Abstract:
Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)
Procedia PDF Downloads 30538210 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map
Procedia PDF Downloads 38538209 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 17538208 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 20738207 The Impact of Recurring Events in Fake News Detection
Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair
Abstract:
Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM
Procedia PDF Downloads 2538206 Identification of Coauthors in Scientific Database
Authors: Thiago M. R Dias, Gray F. Moita
Abstract:
The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.Keywords: extraction, data integration, information retrieval, scientific collaboration
Procedia PDF Downloads 39738205 A Survey on Students' Intentions to Dropout and Dropout Causes in Higher Education of Mongolia
Authors: D. Naranchimeg, G. Ulziisaikhan
Abstract:
Student dropout problem has not been recently investigated within the Mongolian higher education. A student dropping out is a personal decision, but it may cause unemployment and other social problems including low quality of life because students who are not completed a degree cannot find better-paid jobs. The research aims to determine percentage of at-risk students, and understand reasons for dropouts and to find a way to predict. The study based on the students of the Mongolian National University of Education including its Arkhangai branch school, National University of Mongolia, Mongolian University of Life Sciences, Mongolian University of Science and Technology, Mongolian National University of Medical Science, Ikh Zasag International University, and Dornod University. We conducted the paper survey by method of random sampling and have surveyed about 100 students per university. The margin of error - 4 %, confidence level -90%, and sample size was 846, but we excluded 56 students from this study. Causes for exclusion were missing data on the questionnaire. The survey has totally 17 questions, 4 of which was demographic questions. The survey shows that 1.4% of the students always thought to dropout whereas 61.8% of them thought sometimes. Also, results of the research suggest that students’ dropouts from university do not have relationships with their sex, marital and social status, and peer and faculty climate, whereas it slightly depends on their chosen specialization. Finally, the paper presents the reasons for dropping out provided by the students. The main two reasons for dropouts are personal reasons related with choosing wrong study program, not liking the course they had chosen (50.38%), and financial difficulties (42.66%). These findings reveal the importance of early prevention of dropout where possible, combined with increased attention to high school students in choosing right for them study program, and targeted financial support for those who are at risk.Keywords: at risk students, dropout, faculty climate, Mongolian universities, peer climate
Procedia PDF Downloads 397