Search results for: image-based 3D capturing
43 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 8942 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework
Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua
Abstract:
There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.Keywords: economic growth, embodied, input-output, technology
Procedia PDF Downloads 12441 Steel Concrete Composite Bridge: Modelling Approach and Analysis
Authors: Kaviyarasan D., Satish Kumar S. R.
Abstract:
India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge
Procedia PDF Downloads 18540 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall
Authors: Stefan Fuchs
Abstract:
Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.Keywords: business improvement district, ethnography, shopping mall, urban redevelopment
Procedia PDF Downloads 13639 Locating the Role of Informal Urbanism in Building Sustainable Cities: Insights from Ghana
Authors: Gideon Abagna Azunre
Abstract:
Informal urbanism is perhaps the most ubiquitous urban phenomenon in sub-Saharan Africa (SSA) and Ghana specifically. Estimates suggest that about two-fifths of urban dwellers (37.9%) in Ghana live in informal settlements, while two-thirds of the working labour force are within the informal economy. This makes Ghana invariably an ‘informal country.’ Informal urbanism involves economic and housing activities that are – in law or in practice – not covered (or insufficiently covered) by formal regulations. Many urban folks rely on informal urbanism as a survival strategy due to limited formal waged employment opportunities or rising home prices in the open market. In an era of globalizing neoliberalism, this struggle to survive in cities resonates with several people globally. For years now, there have been intense debates on the utility of informal urbanism – both its economic and housing dimensions – in developing sustainable cities. While some scholars believe that informal urbanism is beneficial to the sustainable city development agenda, others argue that it generates unbearable negative consequences and it symbolizes lawlessness and squalor. Consequently, the main aim of this research was to dig below the surface of the narratives to locate the role of informal urbanism in the quest for sustainable cities. The research geographically focused on Ghana and its burgeoning informal sector. Also, both primary and secondary data were utilized for the analysis; Secondary data entailed a synthesis of the fragmented literature on informal urbanism in Ghana, while primary data entailed interviews with informal stakeholders (such as informal settlement dwellers), city authorities, and planners. These two data sets were weaved together to discover the nexus between informal urbanism and the tripartite dimensions of sustainable cities – economic, social, and environmental. The results from the research showed a two-pronged relationship between informal urbanism and the three dimensions of sustainable city development. In other words, informal urbanism was identified to both positively and negatively affect the drive for sustainable cities. On the one hand, it provides employment (particularly to women), supplies households’ basic needs (shelter, health, water, and waste management), and enhances civic engagement. However, on the other hand, it perpetuates social and gender inequalities, insecurity, congestion, and pollution. The research revealed that a ‘black and white’ interpretation and policy approach is incapable of capturing the complexities of informal urbanism. Therefore, trying to eradicate or remove it from the urbanscape because it exhibits some negative consequences means cities will lose their positive contributions. The inverse also holds true. A careful balancing act is necessary to maximize the benefits and minimize the costs. Overall, the research presented a de-colonial theorization of informal urbanism and thus followed post-colonial scholars’ clarion call to African cities to embrace the paradox of informality and find ways to integrate it into the city-building process.Keywords: informal urbanism, sustainable city development, economic sustainability, social sustainability, environmental sustainability, Ghana
Procedia PDF Downloads 10738 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulationsKeywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow
Procedia PDF Downloads 50237 A Comparison of Two and Three Dimensional Motion Capture Methodologies in the Analysis of Underwater Fly Kicking Kinematics
Authors: Isobel M. Thompson, Dorian Audot, Dominic Hudson, Martin Warner, Joseph Banks
Abstract:
Underwater fly kick is an essential skill in swimming, which can have a considerable impact upon overall race performance in competition, especially in sprint events. Reduced wave drags acting upon the body under the surface means that the underwater fly kick will potentially be the fastest the swimmer is travelling throughout the race. It is therefore critical to understand fly kicking techniques and determining biomechanical factors involved in the performance. Most previous studies assessing fly kick kinematics have focused on two-dimensional analysis; therefore, the three-dimensional elements of the underwater fly kick techniques are not well understood. Those studies that have investigated fly kicking techniques using three-dimensional methodologies have not reported full three-dimensional kinematics for the techniques observed, choosing to focus on one or two joints. There has not been a direct comparison completed on the results obtained using two-dimensional and three-dimensional analysis, and how these different approaches might affect the interpretation of subsequent results. The aim of this research is to quantify the differences in kinematics observed in underwater fly kicks obtained from both two and three-dimensional analyses of the same test conditions. In order to achieve this, a six-camera underwater Qualisys system was used to develop an experimental methodology suitable for assessing the kinematics of swimmer’s starts and turns. The cameras, capturing at a frequency of 100Hz, were arranged along the side of the pool spaced equally up to 20m creating a capture volume of 7m x 2m x 1.5m. Within the measurement volume, error levels were estimated at 0.8%. Prior to pool trials, participants completed a landside calibration in order to define joint center locations, as certain markers became occluded once the swimmer assumed the underwater fly kick position in the pool. Thirty-four reflective markers were placed on key anatomical landmarks, 9 of which were then removed for the pool-based trials. The fly-kick swimming conditions included in the analysis are as follows: maximum effort prone, 100m pace prone, 200m pace prone, 400m pace prone, and maximum pace supine. All trials were completed from a push start to 15m to ensure consistent kick cycles were captured. Both two-dimensional and three-dimensional kinematics are calculated from joint locations, and the results are compared. Key variables reported include kick frequency and kick amplitude, as well as full angular kinematics of the lower body. Key differences in these variables obtained from two-dimensional and three-dimensional analysis are identified. Internal rotation (up to 15º) and external rotation (up to -28º) were observed using three-dimensional methods. Abduction (5º) and adduction (15º) were also reported. These motions are not observed in the two-dimensional analysis. Results also give an indication of different techniques adopted by swimmers at various paces and orientations. The results of this research provide evidence of the strengths of both two dimensional and three dimensional motion capture methods in underwater fly kick, highlighting limitations which could affect the interpretation of results from both methods.Keywords: swimming, underwater fly kick, performance, motion capture
Procedia PDF Downloads 13336 Meeting the Health Needs of Adolescents and Young Adults: Developing and Evaluating an Electronic Questionnaire and Health Report Form, for the Health Assessment at Youth Health Clinics – A Mixed Methods Project
Authors: P.V. Lostelius, M.Mattebo, E. Thors Adolfsson, A. Söderlund, Å. Revenäs
Abstract:
Adolescents are vulnerable in healthcare settings. Early detection of poor health in young people is important to support a good quality of life and adult social functioning. Youth Health Clinics (YHCs) in Sweden provide healthcare for young people ages 13-25 years old. Using an overall mixed methods approach, the project’s main objective was to develop and evaluate an electronic health system, including a health questionnaire, a case report form, and an evaluation questionnaire to assess young people’s health risks in early stages, increase health, and quality of life. In total, 72 young people, 16-23 years old, eleven healthcare professionals and eight researchers participated in the three project studies. Results from interviews with fifteen young people gave that an electronic health questionnaire should include questions about physical-, mental-, sexual health and social support. It should specifically include questions about self-harm and suicide risk. The young people said that the questionnaire should be appealing, based on young people’s needs and be user-friendly. It was important that young people felt safe when responding to the questions, both physically and electronically. Also, they found that it had the potential to support the face-to face-meeting between young people and healthcare professionals. The electronic health report system was developed by the researchers, performing a structured development of the electronic health questionnaire, construction of a case report form to present the results from the health questions, along with an electronic evaluation questionnaire. An Information Technology company finalized the development by digitalizing the electronic health system. Four young people, three healthcare professionals and seven researchers evaluated the usability using interviews and a usability questionnaire. The electronic health questionnaire was found usable for YHCs but needed some clarifications. Essentially, the system succeeded in capturing the overall health of young people; it should be able to keep the interest of young people and have the potential to contribute to health assessment planning and young people’s self-reflection, sharing vulnerable feelings with healthcare professionals. In advance of effect studies, a feasibility study was performed by collecting electronic questionnaire data from 54 young people and interview data from eight healthcare professionals to assess the feasibility of the use of the electronic evaluation questionnaire, the case report form, and the planned recruitment method. When merging the results, the research group found that the evaluation questionnaire and the health report were feasible for future research. However, the COVID-19 pandemic, commitment challenges and drop-outs affected the recruitment of young people. Also, some healthcare professionals felt insecure about using computers and electronic devices and worried that their workload would increase. This project contributes knowledge about the development and use of electronic health tools for young people. Before implementation, clinical routines need for using the health report system need to be considered.Keywords: adolescent health, developmental studies, electronic health questionnaire, mixed methods research
Procedia PDF Downloads 10735 Analysis of Electric Mobility in the European Union: Forecasting 2035
Authors: Domenico Carmelo Mongelli
Abstract:
The context is that of great uncertainty in the 27 countries belonging to the European Union which has adopted an epochal measure: the elimination of internal combustion engines for the traction of road vehicles starting from 2035 with complete replacement with electric vehicles. If on the one hand there is great concern at various levels for the unpreparedness for this change, on the other the Scientific Community is not preparing accurate studies on the problem, as the scientific literature deals with single aspects of the issue, moreover addressing the issue at the level of individual countries, losing sight of the global implications of the issue for the entire EU. The aim of the research is to fill these gaps: the technological, plant engineering, environmental, economic and employment aspects of the energy transition in question are addressed and connected to each other, comparing the current situation with the different scenarios that could exist in 2035 and in the following years until total disposal of the internal combustion engine vehicle fleet for the entire EU. The methodologies adopted by the research consist in the analysis of the entire life cycle of electric vehicles and batteries, through the use of specific databases, and in the dynamic simulation, using specific calculation codes, of the application of the results of this analysis to the entire EU electric vehicle fleet from 2035 onwards. Energy balance sheets will be drawn up (to evaluate the net energy saved), plant balance sheets (to determine the surplus demand for power and electrical energy required and the sizing of new plants from renewable sources to cover electricity needs), economic balance sheets (to determine the investment costs for this transition, the savings during the operation phase and the payback times of the initial investments), the environmental balances (with the different energy mix scenarios in anticipation of 2035, the reductions in CO2eq and the environmental effects are determined resulting from the increase in the production of lithium for batteries), the employment balances (it is estimated how many jobs will be lost and recovered in the reconversion of the automotive industry, related industries and in the refining, distribution and sale of petroleum products and how many will be products for technological innovation, the increase in demand for electricity, the construction and management of street electric columns). New algorithms for forecast optimization are developed, tested and validated. Compared to other published material, the research adds an overall picture of the energy transition, capturing the advantages and disadvantages of the different aspects, evaluating the entities and improvement solutions in an organic overall picture of the topic. The results achieved allow us to identify the strengths and weaknesses of the energy transition, to determine the possible solutions to mitigate these weaknesses and to simulate and then evaluate their effects, establishing the most suitable solutions to make this transition feasible.Keywords: engines, Europe, mobility, transition
Procedia PDF Downloads 6134 Courtyard Evolution in Contemporary Sustainable Living
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behaviour will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects as intelligently claimed by Jonathan Hill in his Weather Architecture discourse. Furthermore, following Pallasmaa’s understanding, the building will be seen not as an end itself and the elements of an architectural experience as having a verb form rather than being nouns. This will further enhance the notion of merging the subject-human and the object-building as discussed by Julio Bermudez. This eventually will enable to generate the discussion of the understanding of the building constructed according to the specifics of place and inhabitants, shaped by its physical and human topography as referred by Adam Sharr in relation to Heidegger’s thinking. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. The above premises will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. It aims at capturing not only its direct and quite obvious bioclimatic features, but rather to evolve them by adjusting the whole house in a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. A new social identity of people, directly involved and interacting with the weather and climatic conditions will be seen as the result of balancing the social with the technological sustainability, the immaterial and the material aspects of the built environment.Keywords: building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture
Procedia PDF Downloads 41833 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners
Authors: Anna-Maria Ramezanzadeh
Abstract:
Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics
Procedia PDF Downloads 16632 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 6731 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach
Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal
Abstract:
The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)
Procedia PDF Downloads 7030 Contribution to the Understanding of the Hydrodynamic Behaviour of Aquifers of the Taoudéni Sedimentary Basin (South-eastern Part, Burkina Faso)
Authors: Kutangila Malundama Succes, Koita Mahamadou
Abstract:
In the context of climate change and demographic pressure, groundwater has emerged as an essential and strategic resource whose sustainability relies on good management. The accuracy and relevance of decisions made in managing these resources depend on the availability and quality of scientific information they must rely on. It is, therefore, more urgent to improve the state of knowledge on groundwater to ensure sustainable management. This study is conducted for the particular case of the aquifers of the transboundary sedimentary basin of Taoudéni in its Burkinabe part. Indeed, Burkina Faso (and the Sahel region in general), marked by low rainfall, has experienced episodes of severe drought, which have justified the use of groundwater as the primary source of water supply. This study aims to improve knowledge of the hydrogeology of this area to achieve sustainable management of transboundary groundwater resources. The methodological approach first described lithological units regarding the extension and succession of different layers. Secondly, the hydrodynamic behavior of these units was studied through the analysis of spatio-temporal variations of piezometric. The data consists of 692 static level measurement points and 8 observation wells located in the usual manner in the area and capturing five of the identified geological formations. Monthly piezometric level chronicles are available for each observation and cover the period from 1989 to 2020. The temporal analysis of piezometric, carried out in comparison with rainfall chronicles, revealed a general upward trend in piezometric levels throughout the basin. The reaction of the groundwater generally occurs with a delay of 1 to 2 months relative to the flow of the rainy season. Indeed, the peaks of the piezometric level generally occur between September and October in reaction to the rainfall peaks between July and August. Low groundwater levels are observed between May and July. This relatively slow reaction of the aquifer is observed in all wells. The influence of the geological nature through the structure and hydrodynamic properties of the layers was deduced. The spatial analysis reveals that piezometric contours vary between 166 and 633 m with a trend indicating flow that generally goes from southwest to northeast, with the feeding areas located towards the southwest and northwest. There is a quasi-concordance between the hydrogeological basins and the overlying hydrological basins, as well as a bimodal flow with a component following the topography and another significant component deeper, controlled by the regional gradient SW-NE. This latter component may present flows directed from the high reliefs towards the sources of Nasso. In the source area (Kou basin), the maximum average stock variation, calculated by the Water Table Fluctuation (WTF) method, varies between 35 and 48.70 mm per year for 2012-2014.Keywords: hydrodynamic behaviour, taoudeni basin, piezometry, water table fluctuation
Procedia PDF Downloads 6529 Conceptual Methods of Mitigating Matured Urban Tree Roots Surviving in Conflicts Growth within Built Environment: A Review
Authors: Mohd Suhaizan Shamsuddin
Abstract:
Urbanization exacerbates the environment quality and pressures of matured urban trees' growth and development in changing environment. The growth of struggled matured urban tree-roots by spreading within the existences of infrastructures, resulting in large damage to the structured and declined growth. Many physiological growths declined or damages by the present and installations of infrastructures within and nearby root zone. Afford to remain both matured urban tree and infrastructures as a service provider causes damage and death, respectively. Inasmuch, spending more expenditure on fixing both or removing matured urban trees as risky to the future environment as the mitigation methods to reduce the problems are unconcerned. This paper aims to explain mitigation method practices of reducing the encountered problems of matured urban tree-roots settling and infrastructures while modified urban soil to sustain at an optimum level. Three categories capturing encountered conflicts growth of matured urban tree-roots growth within and nearby infrastructures by mitigating the problems of limited soil spaces, poor soil structures and soil space barrier installations and maintenance. The limited soil space encountered many conflicts and identified six methods that mitigate the survival tree-roots, such as soil volume/mounding, soil replacement/amendment for the radial trench, soil spacing-root bridge, root tunneling, walkway/pavement rising/diverted, and suspended pavement. The limited soil spaces are mitigation affords of inadequate soil-roots and spreading root settling and modification of construction soil media since the barrier existed and installed in root trails or zones. This is the reason for enabling tree-roots spreading and finds adequate sources (nutrients, water uptake and oxygen), spaces and functioning to stability stand of root anchorage since the matured tree grows larger. The poor soil structures were identified as three methods to mitigate soil materials' problems, and fewer soil voids comprise skeletal soil, structural soil, and soil cell. Mitigation of poor soil structure is altering the existing and introducing new structures by modifying the quantities and materials ratio allowing more voids beneath for roots spreading by considering the above structure of foot and vehicle traffics functioning or load-bearing. The soil space barrier installations and maintenance recognized to sustain both infrastructures and tree-roots grown in limited spaces and its benefits, the root barrier installations and root pruning are recommended. In conclusion, these recommended methods attempt to mitigate the present problems encountered at a particular place and problems among tree-roots and infrastructures exist. The combined method is the best way to alleviates the conflicts since the recognized conflicts are between tree-roots and man-made while the urban soil is modified. These presenting methods are most considered to sustain the matured urban trees' lifespan growth in the urban environment.Keywords: urban tree-roots, limited soil spaces, poor soil structures, soil space barrier and maintenance
Procedia PDF Downloads 19928 Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply
Authors: Sukran Acikel, Mehmet Ekmekci, Otgonbayar Namkhai
Abstract:
Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation.Keywords: conceptual model, dewatering, groundwater, mining operation
Procedia PDF Downloads 40027 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 17726 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils
Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein
Abstract:
Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.Keywords: air pollution, schools, pupils, congestion
Procedia PDF Downloads 11725 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 8424 Pursuing Knowledge Society Excellence: Knowledge Management and Open Innovation Platforms for Research, Industry and Business Collaboration in Singapore
Authors: Irina-Emily Hansen, Ola Jon Mork
Abstract:
The European economic growth strategy and supporting it framework for research and innovation highlight the importance of nurturing new open innovation in order to strengthen Europe’s competitiveness. One of the main approaches to enhance innovation in European society is the Triple Helix model that centres on science- industry collaboration where the universities are assigned the managerial role. In spite of the defined collaboration strategy, the collaboration between academics and in-dustry in Europe has still many challenges. Many of them are explained by culture difference: academic culture aims towards scientific knowledge, while businesses are oriented towards pro-duction and profitable results; also execution of collaborative projects is seen differently by part-ners involved. That proves that traditional management strategies applied to collaboration between researchers and businesses are not effective. There is a need for dynamic strategies that can support the interaction between researchers and industry intensifying knowledge co-creation and contributing to development of national innovation system (NIS) by incorporating individual, organizational and inter-organizational learning. In order to find a good subject to follow, the researchers of a given paper have investigated one of the most rapidly developing knowledge-based, innovation society, Singapore. Singapore does not dispose much land- or sea- resources that normally provide income for any country. Therefore, Singapore was forced to think differently and build society on resources that are available: talented people and knowledge. Singapore has during the last twenty years developed attracting high rated university camps, research institutions and leading industrial companies from all over the world. This article elucidates and elaborates Singapore’s national innovation strategies from Knowledge Management perspective. The research is done on the variety of organizations that enable and support knowledge development in this state: governmental research and development (R&D) centers in universities, private talent incubators for entrepreneurs, and industrial companies with own R&D departments. The research methods are based on presentations, documents, and visits at a number of universities, research institutes, innovation parks, governmental institutions, industrial companies and innovation exhibitions in Singapore. In addition, a literature review of science articles is made regarding the topic. The first finding is that objectives of collaboration between researchers, entrepreneurs and industry in Singapore correspond primary goals of the state: knowledge- and economy growth. There are common objectives for all stakeholders on all national levels. The second finding is that Singapore has enabled system on a national level that supports innovation the entire way from fostering or capturing the new knowledge, providing knowledge exchange and co-creation to application of it in real-life. The conclusion is that innovation means not only new idea, but also the enabling mechanism for its execution and the marked-oriented approach in order that new knowledge can be absorbed in society. The future research can be done with regards to application of Singapore knowledge management strategy in innovation to European countries.Keywords: knowledge management strategy, national innovation system, research industry and business collaboration, knowledge enabling
Procedia PDF Downloads 18423 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis
Authors: William Ho, Agus Wicaksana
Abstract:
Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review
Procedia PDF Downloads 7422 A Study on Aquatic Bycatch Mortality Estimation Due to Prawn Seed Collection and Alteration of Collection Method through Sustainable Practices in Selected Areas of Sundarban Biosphere Reserve (SBR), India
Authors: Samrat Paul, Satyajit Pahari, Krishnendu Basak, Amitava Roy
Abstract:
Fishing is one of the pivotal livelihood activities, especially in developing countries. Today it is considered an important occupation for human society from the era of human settlement began. In simple terms, non-target catches of any species during fishing can be considered as ‘bycatch,’ and fishing bycatch is neither a new fishery management issue nor a new problem. Sundarban is one of the world’s largest mangrove land expanding up to 10,200 sq. km in India and Bangladesh. This largest mangrove biome resource is used by the local inhabitants commercially to run their livelihood, especially by forest fringe villagers (FFVs). In Sundarban, over-fishing, especially post larvae collection of wild Penaeus monodon, is one of the major concerns, as during the collection of P. monodon, different aquatic species are destroyed as a result of bycatch mortality which changes in productivity and may negatively impact entire biodiversity, of the ecosystem. Wild prawn seed collection gear like a small mesh sized net poses a serious threat to aquatic stocks, where the collection isn’t only limited to prawn seed larvae. As prawn seed collection processes are inexpensive, require less monetary investment, and are lucrative; people are easily engaged here as their source of income. Wildlife Trust of India’s (WTI) intervention in selected forest fringe villages of Sundarban Tiger Reserve (STR) was to estimate and reduce the mortality of aquatic bycatches by involving local communities in newly developed release method and their time engagement in prawn seed collection (PSC) by involving them in Alternate Income Generation (AIG). The study was conducted for their taxonomic identification during the period of March to October 2019. Collected samples were preserved in 70% ethyl alcohol for identification, and all the preserved bycatch samples were identified morphologically by the expertise of the Zoological Survey of India (ZSI), Kolkata. Around 74 different aquatic species, where 11 different species are molluscs, 41 fish species, out of which 31 species were identified, and 22 species of crustacean collected, out of which 18 species were identified. Around 13 different species belong to a different order, and families were unable to identify them morphologically as they were collected in the juvenile stage. The study reveals that for collecting one single prawn seed, eight individual life of associated faunas are being lost. Zero bycatch mortality is not practical; rather, collectors should focus on bycatch reduction by avoiding capturing, allowing escaping, and mortality reduction, and must make changes in their fishing method by increasing net mesh size, which will avoid non-target captures. But as the prawns are small in size (generally 1-1.5 inches in length), thus increase net size making economically less or no profit for collectors if they do so. In this case, returning bycatches is considered one of the best ways to a reduction in bycatch mortality which is a more sustainable practice.Keywords: bycatch mortality, biodiversity, mangrove biome resource, sustainable practice, Alternate Income Generation (AIG)
Procedia PDF Downloads 15121 Innovation in PhD Training in the Interdisciplinary Research Institute
Authors: B. Shaw, K. Doherty
Abstract:
The Cultural Communication and Computing Research Institute (C3RI) is a diverse multidisciplinary research institute including art, design, media production, communication studies, computing and engineering. Across these disciplines it can seem like there are enormous differences of research practice and convention, including differing positions on objectivity and subjectivity, certainty and evidence, and different political and ethical parameters. These differences sit within, often unacknowledged, histories, codes, and communication styles of specific disciplines, and it is all these aspects that can make understanding of research practice across disciplines difficult. To explore this, a one day event was orchestrated, testing how a PhD community might communicate and share research in progress in a multi-disciplinary context. Instead of presenting results at a conference, research students were tasked to articulate their method of inquiry. A working party of students from across disciplines had to design a conference call, visual identity and an event framework that would work for students across all disciplines. The process of establishing the shape and identity of the conference was revealing. Even finding a linguistic frame that would meet the expectations of different disciplines for the conference call was challenging. The first abstracts submitted either resorted to reporting findings, or only described method briefly. It took several weeks of supported intervention for research students to get ‘inside’ their method and to understand their research practice as a process rich with philosophical and practical decisions and implications. In response to the abstracts the conference committee generated key methodological categories for conference sessions, including sampling, capturing ‘experience’, ‘making models’, researcher identities, and ‘constructing data’. Each session involved presentations by visual artists, communications students and computing researchers with inter-disciplinary dialogue, facilitated by alumni Chairs. The apparently simple focus on method illuminated research process as a site of creativity, innovation and discovery, and also built epistemological awareness, drawing attention to what is being researched and how it can be known. It was surprisingly difficult to limit students to discussing method, and it was apparent that the vocabulary available for method is sometimes limited. However, by focusing on method rather than results, the genuine process of research, rather than one constructed for approval, could be captured. In unlocking the twists and turns of planning and implementing research, and the impact of circumstance and contingency, students had to reflect frankly on successes and failures. This level of self – and public- critique emphasised the degree of critical thinking and rigour required in executing research and demonstrated that honest reportage of research, faults and all, is good valid research. The process also revealed the degree that disciplines can learn from each other- the computing students gained insights from the sensitive social contextualizing generated by communications and art and design students, and art and design students gained understanding from the greater ‘distance’ and emphasis on application that computing students applied to their subjects. Finding the means to develop dialogue across disciplines makes researchers better equipped to devise and tackle research problems across disciplines, potentially laying the ground for more effective collaboration.Keywords: interdisciplinary, method, research student, training
Procedia PDF Downloads 20620 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 10919 The Shared Breath Project: Inhabiting Each Other’s Words and Being
Authors: Beverly Redman
Abstract:
With the Theatre Season of 2020-2021 cancelled due to COVID-19 at Purdue University, Fort Wayne, IN, USA, faculty directors found themselves scrambling to create theatre production opportunities for their students in the Department of Theatre. Redman, Chair of the Department, found her community to be suffering from anxieties brought on by a confluence of issues: the global-scale Covid-19 Pandemic, the United States’ Black Lives Matter protests erupting in cities all across the country and the coming Presidential election, arguably the most important and most contentious in the country’s history. Redman wanted to give her students the opportunity to speak not only on these issues but also to be able to record who they were at this time in their personal lives, as well as in this broad socio-political context. She also wanted to invite them into an experience of feeling empathy, too, at a time when empathy in this world seems to be sorely lacking. Returning to a mode of Devising Theatre she had used with community groups in the past, in which storytelling and re-enactment of participants’ life events combined with oral history documentation practices, Redman planned The Shared Breath Project. The process involved three months of workshops, in which participants alternated between theatre exercises and oral history collection and documentation activities as a way of generating original material for a theatre production. The goal of the first half of the project was for each participant to produce a solo piece in the form of a monologue after many generations of potential material born out of gammes, improvisations, interviews and the like. Along the way, many film and audio clips recorded the process of each person’s written documentation—documentation prepared by the subject him or herself but also by others in the group assigned to listen, watch and record. Then, in the second half of the project—and only once each participant had taken their own contributions from raw improvisatory self-presentations and through the stages of composition and performative polish, participants then exchanged their pieces. The second half of the project involved taking on each other’s words, mannerisms, gestures, melodic and rhythmic speech patterns and inhabiting them through the rehearsal process as their own, thus the title, The Shared Breath Project. Here, in stage two the acting challenges evolved to be those of capturing the other and becoming the other through accurate mimicry that embraces Denis Diderot’s concept of the Paradox of Acting, in that the actor is both seeming and being simultaneous. This paper shares the carefully documented process of making the live-streamed theatre production that resulted from these workshops, writing processes and rehearsals, and forming, The Shared Breath Project, which ultimately took the students’ Realist, life-based pieces and edited them into a single unified theatre production. The paper also utilizes research on the Paradox of Acting, putting a Post-Structuralist spin on Diderot’s theory. Here, the paper suggests the limitations of inhabiting the other by allowing that the other is always already a thing impenetrable but nevertheless worthy of unceasing empathetic, striving and delving in an epoch in which slow, careful attention to our fellows is in short supply.Keywords: otherness, paradox of acting, oral history theatre, devised theatre, political theatre, community-based theatre, peoples’ theatre
Procedia PDF Downloads 18418 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 5917 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 12816 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 14415 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation
Authors: Maria Lazari, Lorenzo Sanavia
Abstract:
Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity
Procedia PDF Downloads 22414 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 61