Search results for: ground truth for supervised learning
9103 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment
Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing
Abstract:
Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model
Procedia PDF Downloads 1889102 Studies of Substituent and Solvent Effect on Spectroscopic Properties Of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 Coumarin
Authors: Sanjay Kumar
Abstract:
This paper reports the solvent effects on the electronic absorption and fluorescence emission spectra of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 coumarin derivatives having -OH, -CH3 and -CF3 substituent at different positions in various solvents (Polar and Non-Polar). The first excited singlet state dipole moment and ground state dipole moment were calculated using Bakhshiev, Kawski-Chamma-Viallet and Reichardt-Dimroth equations and were compared for all the coumarin studied. In all cases the dipole moments were found to be higher in the excited singlet state than in the ground state indicating a substantial redistribution of Π-electron density in the excited state. The angle between the excited singlet state and ground state dipole moment is also calculated. The red shift of the absorption and fluorescence emission bands, observed for all the coumarin studied upon increasing the solvent polarity indicating that the electronic transitions were Π → Π* nature.Keywords: coumarin, solvent effects, absorption spectra, emission spectra, excited singlet state dipole moment, ground state dipole moment, solvatochromism
Procedia PDF Downloads 8339101 Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City
Authors: Amar F. Siddique
Abstract:
The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station.Keywords: fourier amplitude ratio, ground response analysis, peak ground acceleration, spectral acceleration
Procedia PDF Downloads 1799100 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement
Authors: Chao Xu
Abstract:
Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis
Procedia PDF Downloads 3549099 Social Learning and the Flipped Classroom
Authors: Albin Wallace
Abstract:
This paper examines the use of social learning platforms in conjunction with the emergent pedagogy of the ‘flipped classroom’. In particular the attributes of the social learning platform “Edmodo” is considered alongside the changes in the way in which online learning environments are being implemented, especially within British education. Some observations are made regarding the use and usefulness of these platforms along with a consideration of the increasingly decentralized nature of education in the United Kingdom.Keywords: education, Edmodo, Internet, learning platforms
Procedia PDF Downloads 5449098 Mobile Learning in Teacher Education: A Review in Context of Developing Countries
Authors: Mehwish Raza
Abstract:
Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.Keywords: design model, developing countries, key characteristics, mobile learning
Procedia PDF Downloads 4479097 An Investigation on Engineering Students’ Perceptions towards E-Learning in the UK
Authors: Razzaghifard P., Arya F., Chen S. Chien-I, Abdi B., Razzaghifard V., Arya A. H., Nazary A., Hosseinpour H., Ghabelnezam K.
Abstract:
E-learning, also known as online learning, has indicated increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in the UK. For the purpose of the present study, 145 second-year engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions of e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions of e-learning.Keywords: e-learning, higher, education, engineering education, online learning
Procedia PDF Downloads 1219096 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development
Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola
Abstract:
In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications
Procedia PDF Downloads 5959095 Effect of Scarp Topography on Seismic Ground Motion
Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song
Abstract:
Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.Keywords: scarp topography, ground motion, amplification factor, vertical incident wave
Procedia PDF Downloads 2629094 Semantic Platform for Adaptive and Collaborative e-Learning
Authors: Massra M. Sabeima, Myriam lamolle, Mohamedade Farouk Nanne
Abstract:
Adapting the learning resources of an e-learning system to the characteristics of the learners is an important aspect to consider when designing an adaptive e-learning system. However, this adaptation is not a simple process; it requires the extraction, analysis, and modeling of user information. This implies a good representation of the user's profile, which is the backbone of the adaptation process. Moreover, during the e-learning process, collaboration with similar users (same geographic province or knowledge context) is important. Productive collaboration motivates users to continue or not abandon the course and increases the assimilation of learning objects. The contribution of this work is the following: we propose an adaptive e-learning semantic platform to recommend learning resources to learners, using ontology to model the user profile and the course content, furthermore an implementation of a multi-agent system able to progressively generate the learning graph (taking into account the user's progress, and the changes that occur) for each user during the learning process, and to synchronize the users who collaborate on a learning object.Keywords: adaptative learning, collaboration, multi-agent, ontology
Procedia PDF Downloads 1759093 A Theoretical Framework for Design Theories in Mobile Learning: A Higher Education Perspective
Authors: Paduri Veerabhadram, Antoinette Lombard
Abstract:
In this paper a framework for hypothesizing about mobile learning to complement theories of formal and informal learning is presented. As such, activity theory will form the main theoretical lens through which the elements involved in formal and informal learning for mobile learning will be explored, specifically related to context-aware mobile learning application. The author believes that the complexity of the relationships involved can best be analysed using activity theory. Activity theory, as a social, cultural and activity theory can be used as a mobile learning framework in an academic environment, but to develop an optimal artifact, through investigation of inherent system's contradictions. As such, it serves as a powerful modelling tool to explore and understand the design of a mobile learning environment in the study’s environment. The Academic Tool Kit Framework (ATKF) as also employed for designing of a constructivism learning environment, effective in assisting universities to facilitate lecturers to effectively implement learning through utilizing mobile devices. Results indicate a positive perspective of students in the use of mobile devices for formal and informal learning, based on the context-aware learning environment developed through the use of activity theory and ATKF.Keywords: collaborative learning, cooperative learning, context-aware learning environment, mobile learning, pedagogy
Procedia PDF Downloads 5689092 Technology in English Language Teaching and Its Benefits in Improving Language Skills
Authors: Yasir Naseem
Abstract:
In this fast-growing and evolving world, usage and adoption of technology have displayed an essential component of the learning process, both in and out of the class, which converges and incorporates every domain of the learning aspects. It aids in learning distinct entities irrespective of their levels of challenge. It also incorporates both viewpoints of learning, i.e., competence as well as the performances of the learner. In today's learning scenario, nearly every language class ordinarily uses some form of technology. It integrates with various teaching methodologies and transforms in a way that now it grew as an integral part of the language learning courses. It has been employed to facilitate, promote, and enhances language learning. It facilitates educators in numerous ways and enhances their methodologies by equipping them to modify classroom activities, which covers every aspect of language learning.Keywords: communication, methodology, technology, skills
Procedia PDF Downloads 1759091 Research on the Online Learning Activities Design and Students’ Experience Based on APT Model
Authors: Wang Yanli, Cheng Yun, Yang Jiarui
Abstract:
Due to the separation of teachers and students, online teaching during the COVID-19 epidemic was faced with many problems, such as low enthusiasm of students, distraction, low learning atmosphere, and insufficient interaction between teachers and students. The essay designed the elaborate online learning activities of the course 'Research Methods of Educational Science' based on the APT model from three aspects of multiple assessment methods, a variety of teaching methods, and online learning environment and technology. Student's online learning experience was examined from the perception of online course, the perception of the online learning environment, and satisfaction after the course’s implementation. The research results showed that students have a positive overall evaluation of online courses, a high degree of engagement in learning, positive acceptance of online learning, and high satisfaction with it, but students hold a relatively neutral attitude toward online learning. And some dimensions in online learning experience were found to have positive influence on students' satisfaction with online learning. We suggest making the good design of online courses, selecting proper learning platforms, and conducting blended learning to improve students’ learning experience. This study has both theoretical and practical significance for the design, implementation, effect feedback, and sustainable development of online teaching in the post-epidemic era.Keywords: APT model, online learning, online learning activities, learning experience
Procedia PDF Downloads 1359090 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 1949089 An Augmented Reality Based Self-Learning Support System for Skills Training
Authors: Chinlun Lai, Yu-Mei Chang
Abstract:
In this paper, an augmented reality learning support system is proposed to replace the traditional teaching tool thus to help students improve their learning motivation, effectiveness, and efficiency. The system can not only reduce the exhaust of educational hardware and realistic material, but also provide an eco-friendly and self-learning practical environment in any time and anywhere with immediate practical experiences feedback. To achieve this, an interactive self-training methodology which containing step by step operation directions is designed using virtual 3D scenario and wearable device platforms. The course of nasogastric tube care of nursing skills is selected as the test example for self-learning and online test. From the experimental results, it is observed that the support system can not only increase the student’s learning interest but also improve the learning performance than the traditional teaching methods. Thus, it fulfills the strategy of learning by practice while reducing the related cost and effort significantly and is practical in various fields.Keywords: augmented reality technology, learning support system, self-learning, simulation learning method
Procedia PDF Downloads 1679088 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1419087 Gamification to Enhance Learning Using Gagne's Learning Model
Authors: M. L. McLain, R. Sreelakshmi, Abhishek, Rajeshwaran, Bhavani Rao, Kamal Bijlani, R. Jayakrishnan
Abstract:
Technology enhanced learning has brought drastic changes in the field of education in the modern world. In this study we explore a novel way to improve how high school students learn by building a serious game that uses a pedagogical model developed by Robert Gagne. By integrating serious game with principles of Gagne’s learning model can provide engaging and meaningful instructions to students. The game developed in this study is a waste sorting game that can easily and succinctly demonstrate the principles of this learning model. All the tasks in the game that the player has to accomplish correspond to Gagne’s “Nine Events of Learning”. A quiz is incorporated in order to get data on the progress made by the player in understanding the concept and as well as to assess them. Additionally, an experimental study was conducted which demonstrates that game based learning using Gagne’s event is more effective than a traditional classroom setup.Keywords: game based learning, sorting and recycling of waste, Gagne’s learning model, e-Learning, technology enhanced learning
Procedia PDF Downloads 6319086 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables
Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin
Abstract:
The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.Keywords: education faculty students, attitude towards e-learning, gender, daily internet usage time, m-learning
Procedia PDF Downloads 3079085 Collaborative Online Learning for Lecturers
Authors: Lee Bih Ni, Emily Doreen Lee, Wee Hui Yean
Abstract:
This paper was prepared to see the perceptions of online lectures regarding collaborative learning, in terms of how lecturers view online collaborative learning in the higher learning institution. The purpose of this study was conducted to determine the perceptions of online lectures about collaborative learning, especially how lecturers see online collaborative learning in the university. Adult learning education enhance collaborative learning culture with the target of involving learners in the learning process to make teaching and learning more effective and open at the university. This will finally make students learning that will assist each other. It is also to cut down the pressure of loneliness and isolation might felt among adult learners. Their ways in collaborative online was also determined. In this paper, researchers collect data using questionnaires instruments. The collected data were analyzed and interpreted. By analyzing the data, researchers report the results according the proof taken from the respondents. Results from the study, it is not only dependent on the lecturer but also a student to shape a good collaborative learning practice. Rational concepts and pattern to achieve these targets be clear right from the beginning and may be good seen by a number of proposals submitted and include how the higher learning institution has trained with ongoing lectures online. Advantages of online collaborative learning show that lecturers should be trained effectively. Studies have seen that the lecturer aware of online collaborative learning. This positive attitude will encourage the higher learning institution to continue to give the knowledge and skills required.Keywords: collaborative online learning, lecturers’ training, learning, online
Procedia PDF Downloads 4569084 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 1539083 Using LMS as an E-Learning Platform in Higher Education
Authors: Mohammed Alhawiti
Abstract:
Assessment of Learning Management Systems has been of less importance than its due share. This paper investigates the evaluation of learning management systems (LMS) within educational setting as both an online learning system as well as a helpful tool for multidisciplinary learning environment. This study suggests a theoretical e-learning evaluation model, studying a multi-dimensional methods for evaluation through LMS system, service and content quality, learner`s perspective and attitudes of the instructor. A survey was conducted among 105 e-learners. The sample consisted of students at both undergraduate and master’s levels. Content validity, reliability were tested through the instrument, Findings suggested the suitability of the proposed model in evaluation for the satisfaction of learners through LMS. The results of this study would be valuable for both instructors and users of e-learning systems.Keywords: e-learning, LMS, higher education, management systems
Procedia PDF Downloads 4059082 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 669081 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 749080 Students’ Perceptions of Mobile Learning: Case Study of Kuwait
Authors: Rana AlHajri, Salah Al-Sharhan, Ahmed Al-Hunaiyyan
Abstract:
Mobile learning is a new learning landscape that offers opportunity for collaborative, personal, informal, and students’ centered learning environment. In implementing any learning system such as a mobile learning environment, learners’ expectations should be taken into consideration. However, there is a lack of studies on this aspect, particularly in the context of Kuwait higher education (HE) institutions. This study focused on how students perceive the use of mobile devices in learning. Although m-learning is considered as an effective educational tool in developed countries, it is not yet fully utilized in Kuwait. The study reports on the results of a survey conducted on 623 HE students in Kuwait to a better understand students' perceptions and opinions about the effectiveness of using mobile learning systems. An analysis of quantitative survey data is presented. The findings indicated that Kuwait HE students are very familiar with mobile devices and its applications. The results also reveal that students have positive perceptions of m-learning, and believe that video-based social media applications enhance the teaching and learning process.Keywords: higher education, mobile learning, social media, students’ perceptions
Procedia PDF Downloads 3699079 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1019078 Learning Difficulties of Children with Disabilities
Authors: Chalise Kiran
Abstract:
The learning difficulties of children with disabilities are always a matter of concern when we talk about educational needs and quality education of children with disabilities. This paper is the outcome of the review of the literatures based on the literatures on the educational needs and learning difficulties of children with disabilities. For the paper, different studies written on children with disabilities and their education were collected through search engines. The literature put together was analyzed from the angle of learning difficulties faced by children with disabilities and the same were used as a precursor to arrive at the findings on the learning of the children. The analysis showed that children with disabilities face learning difficulties. The reasons for these difficulties could be attributed to factors in terms of authority, structure, school environment, and behaviors of teachers and parents, and the society as a whole.Keywords: children with disabilities, learning difficulties, education, disabled children
Procedia PDF Downloads 1139077 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4929076 Satisfaction on English Language Learning with Online System
Authors: Suwaree Yordchim
Abstract:
The objective is to study the satisfaction on English with an online learning. Online learning system mainly consists of English lessons, exercises, tests, web boards, and supplementary lessons for language practice. The sample groups are 80 Thai students studying English for Business Communication, majoring in Hotel and Lodging Management. The data are analyzed by mean, standard deviation (S.D.) value from the questionnaires. The results were found that the most average of satisfaction on academic aspects are technological searching tool through E-learning system that support the students’ learning (4.51), knowledge evaluation on prepost learning and teaching (4.45), and change for project selections according to their interest, subject contents including practice in the real situations (4.45), respectively.Keywords: English language learning, online system, online learning, supplementary lessons
Procedia PDF Downloads 4659075 A Study of Transferable Strategies in Multilanguage Learning
Authors: Zixi You
Abstract:
With the demand of multilingual speakers increasing in the job market, multi-language learning programs have become more and more popular among undergraduate students. A study on multi-language learning strategies is therefore highly demanded on both practical and theoretical levels. Based on previous classification of learning strategies in SLA, and an investigation of BA Modern Language program students (with post-A level L2 and ab initio L3 learning experience from year one), this study explores and compares different types of learning strategies used by multi-language speakers and learners, transferable learning strategies between L2 and L3, and factors affecting the transfer. The results indicate that all the 23 types of learning strategies of L2 are employed when learning L3 from ab initio level, yet with different tendencies. Learning strategy transfer from L2 to L3 (i.e., the learners attribute the applying of these L3 learning strategies to be a direct result of their L2 learning experience) are observed in all 23 types of learning strategies. Comparatively, six types of “cognitive strategies” have higher transfer tendency than others. With regard to the failure of the transfer of some particular L2 strategies and the development of independent L3 strategies of individual learners, factors such as language proficiency, language typology and learning environment have played important roles among others. The presentation of this study will provide audiences with detailed data, insightful analysis and discussion on both theoretical and practical aspects of multi-language learning that will benefit both students and educators.Keywords: learning strategy, multi-language acquisition, second language acquisition, strategy transfer
Procedia PDF Downloads 5759074 Properties of Ground Granulated Blast Furnace Slag Based Geopolymer Concrete
Authors: Niragi Dave, Ruchika Lalit
Abstract:
Concrete is one of the most widely used materials across the globe mostly second to water and generating high carbon dioxide emission during its whole manufacturing due to the presence of cement as an ingredient. Therefore it is necessary to find an alternative material to the Portland cement. This study focused on the use of Ground Granulated Blast Furnace Slag as geopolymer binder. Geopolymer concrete can be an alternative material which is produced by the chemical reaction of inorganic molecules. On the other hand, waste generating from power plants and other industries like iron and steel industries can be effectively used which has disposal problems. Therefore in this study geopolymer concrete is manufactured by 100% replacement of cement content by ground granulated blast furnace slag and a combination of sodium silicate and sodium hydroxide is used as an alkaline solution. The results have shown that the compressive strengths increased with increasing curing time and type of alkali activators. Naphthalene sulfonate-based superplasticizer performed better than other superplasticizers. All the specimens have been cast at ambient temperature.Keywords: alkali activators, concrete, geopolymer, ground granulated blast furnace slag
Procedia PDF Downloads 327