Search results for: feature matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2000

Search results for: feature matching

1670 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 118
1669 Kitchenary Metaphors in Hindi-Urdu: A Cognitive Analysis

Authors: Bairam Khan, Premlata Vaishnava

Abstract:

The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.

Keywords: cognitive metaphor theories, kitchenary metaphors, hindi-urdu print, and electronic media, grammatical structure of kitchenary metaphors of hindi-urdu

Procedia PDF Downloads 92
1668 HLA-DPB1 Matching on the Outcome of Unrelated Donor Hematopoietic Stem Cell Transplantation

Authors: Shi-xia Xu, Zai-wen Zhang, Ru-xue Chen, Shan Zhou, Xiang-feng Tang

Abstract:

Objective: The clinical influence of HLA-DPB1 mismatches on clinical outcome of HSCT is less clear. This is the first meta-analysis to study the HLA-DPB1 matching statues on clinical outcomes after unrelated donor HSCT. Methods: We searched the CIBMTR, Cochrane Central Register of Controlled Trials (CENTRAL) and related databases (1995.01–2017.06) for all relevant articles. Comparative studies were used to investigate the HLA-DPB1 loci mismatches on clinical outcomes after unrelated donor HSCT, such as the disease-free survival (DFS), overall survival, GVHD, relapse, and transplant-related mortality (TRM). We performed meta-analysis using Review Manager 5.2 software and funnel plot to assess the bias. Results: At first, 1246 articles were retrieved, and 18 studies totaling 26368 patients analyzed. Pooled comparisons of studies found that the HLA-DPB1 mismatched group had a lower rate of DFS than the DPB1-matched group, and lower OS in non-T cell depleted transplantation. The DPB1 mismatched group has a higher incidence of aGVHD and more severe ( ≥ III degree) aGvHD, lower rate of relapse and higher TRM. Moreover, compared with 1-antigen mismatch, 2-antigen mismatched led to a higher risk of TRM and lower relapse rate. Conclusions: This meta-analysis indicated HLA-DPB1 has important influence on survival and transplant-related complications during unrelated donor HSCT and HLA-DPB1 donor selection strategies have been proposed based on a personalized algorithm.

Keywords: human leukocyte antigen, DPB1, transplant, meta-analysis, outcome

Procedia PDF Downloads 295
1667 Kitchenary Metaphors In Hindi-urdu: A Cognitive Analysis

Authors: Bairam Khan, Premlata Vaishnava

Abstract:

The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.

Keywords: cognitive metaphor theory, source domain, target domain, signifier- signified, kitchenary, ethnocultural elements of south asia and hindi- urdu language

Procedia PDF Downloads 76
1666 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 487
1665 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 395
1664 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: image fusion, iris recognition, local binary pattern, wavelet

Procedia PDF Downloads 365
1663 Investigating Malaysian Prereader’s Cognitive Processes when Reading English Picture Storybooks: A Comparative Eye-Tracking Experiment

Authors: Siew Ming Thang, Wong Hoo Keat, Chee Hao Sue, Fung Lan Loo, Ahju Rosalind

Abstract:

There are numerous studies that explored young learners’ literacy skills in Malaysia but none that uses the eye-tracking device to track their cognitive processes when reading picture storybooks. This study used this method to investigate two groups of prereaders’ cognitive processes in four conditions. (1) A congruent picture was presented, and a matching narration was read aloud by a recorder; (2) Children heard a narration telling about the same characters in the picture but involves a different scene; (3) Only a picture with matching text was present; (4) Students only heard the reading aloud of the text on the screen. The two main objectives of this project are to test which content of pictures helps the prereaders (i.e., young children who have not received any formal reading instruction) understand the narration and whether children try to create a coherent mental representation from the oral narration and the pictures. The study compares two groups of children from two different kindergartens. Group1: 15 Chinese children; Group2: 17 Malay children. The medium of instruction was English. An eye-tracker were used to identify Areas of Interest (AOI) of each picture and the five target elements and calculate number of fixations and total time spent on fixation of pictures and written texts. Two mixed factorial ANOVAs with the storytelling performance (good, average, or weak) and vocabulary level (low, medium, high) as between-subject variables, and the Areas of Interests (AOIs) and display conditions as the within-subject variables were performedon the variables.

Keywords: eye-tracking, cognitive processes, literacy skills, prereaders, visual attention

Procedia PDF Downloads 92
1662 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 350
1661 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting

Authors: Analise Borg, Paul Micallef

Abstract:

Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature.

Keywords: audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7

Procedia PDF Downloads 414
1660 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 390
1659 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 131
1658 Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake

Authors: Mehrnoosh Mirzaei

Abstract:

Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction.

Keywords: disaster education, earthquake sign marks, learning table, matching card, risk reduction behavior

Procedia PDF Downloads 251
1657 Employing Visual Culture to Enhance Initial Adult Maltese Language Acquisition

Authors: Jacqueline Żammit

Abstract:

Recent research indicates that the utilization of right-brain strategies holds significant implications for the acquisition of language skills. Nevertheless, the utilization of visual culture as a means to stimulate these strategies and amplify language retention among adults engaging in second language (L2) learning remains a relatively unexplored area. This investigation delves into the impact of visual culture on activating right-brain processes during the initial stages of language acquisition, particularly in the context of teaching Maltese as a second language (ML2) to adult learners. By employing a qualitative research approach, this study convenes a focus group comprising twenty-seven educators to delve into a range of visual culture techniques integrated within language instruction. The collected data is subjected to thematic analysis using NVivo software. The findings underscore a variety of impactful visual culture techniques, encompassing activities such as drawing, sketching, interactive matching games, orthographic mapping, memory palace strategies, wordless picture books, picture-centered learning methodologies, infographics, Face Memory Game, Spot the Difference, Word Search Puzzles, the Hidden Object Game, educational videos, the Shadow Matching technique, Find the Differences exercises, and color-coded methodologies. These identified techniques hold potential for application within ML2 classes for adult learners. Consequently, this study not only provides insights into optimizing language learning through specific visual culture strategies but also furnishes practical recommendations for enhancing language competencies and skills.

Keywords: visual culture, right-brain strategies, second language acquisition, maltese as a second language, visual aids, language-based activities

Procedia PDF Downloads 58
1656 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 158
1655 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 112
1654 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 150
1653 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 366
1652 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 122
1651 Russian Spatial Impersonal Sentence Models in Translation Perspective

Authors: Marina Fomina

Abstract:

The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.

Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject

Procedia PDF Downloads 368
1650 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 144
1649 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 362
1648 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 367
1647 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 104
1646 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms

Authors: Abdelghani Alidra, Mohamed Tahar Kimour

Abstract:

Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.

Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture

Procedia PDF Downloads 280
1645 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems

Authors: Anthony John Walker, Glen Bright

Abstract:

The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.

Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control

Procedia PDF Downloads 173
1644 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer

Procedia PDF Downloads 493
1643 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 88
1642 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 71
1641 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 336