Search results for: content independent features
11360 Strategic Risk Issues for Film Distributors of Hindi Film Industry in Mumbai: A Grounded Theory Approach
Authors: Rashmi Dyondi, Shishir K. Jha
Abstract:
The purpose of the paper is to address the strategic risk issues surrounding Hindi film distribution in Mumbai for a film distributor, who acts as an entrepreneur when launching a product (movie) in the market (film territory).The paper undertakes a fundamental review of films and risk in the Hindi film industry and applies Grounded Theory technique to understand the complex phenomena of risk taking behavior of the film distributors (both independent and studios) in Mumbai. Rich in-depth interviews with distributors are coded to develop core categories through constant comparison leading to conceptualization of the phenomena of interest. This paper is a first-of-its-kind-attempt to understand risk behavior of a distributor, which is akin to entrepreneurial risk behavior under conditions of uncertainty. Unlike extensive scholarly work on dynamics of Hollywood motion picture industry, Hindi film industry is an under-researched area till now. Especially how do film distributors perceive risk is an unexplored study for the Hindi film industry. Films are unique experience products and the film distributor acts as an entrepreneur assuming high risks given the uncertainty in the motion picture business. With the entry of mighty corporate studios and astronomical film budgets posing serious business threats to the independent distributors, there is a need for an in-depth qualitative enquiry (applying grounded theory technique) for unraveling the definition of risk for the independent distributors in Mumbai vis-à-vis the corporate studios. Need for good content was a common challenge to both the groups in the present state of the industry, however corporate studios with their distinct ideologies, focus on own productions and financial power faced different set of challenges than the independents (like achieving sustainability in business). Softer issues like market goodwill and relations with producers, honesty in business dealings and transparency came out to be clear markers for success of independents in long run. The findings from the qualitative analysis stress on different elements of risk and challenges as perceived by the two groups of distributors in the Hindi film industry and provide a future research agenda for empirical investigation of determinants of box-office success of Hindi films distributed in Mumbai.Keywords: entrepreneurial risk behavior, film distribution strategy, Hindi film industry, risk
Procedia PDF Downloads 31311359 Freezing Characteristics and Texture Variation of Apple Fruits after Dehydrofreezing Assisted by Instant Controlled Pressure Drop Treatment
Authors: Leila Ben Haj Said, Sihem Bellagha, Karim Allaf
Abstract:
The present study deals with the dehydrofreezing assisted by instant controlled pressure drop (DIC) treatment of apple fruits. Samples previously dehydrated until different water contents (200, 100, and 30% dry basis (db)) and DIC treated were frozen at two different freezing velocities (V+ and V-), depending on the thermal resistance established between the freezing airflow and the sample surface. The effects of sample water content (W) and freezing velocity (V) on freezing curves and characteristics, exudate water (EW) and texture variation were examined. Lower sample water content implied higher freezing rates, lower initial freezing points (IFP), lower practical freezing time (PFT), and lower specific freezing time (SFT). EW (expressed in g exudate water/100 g water in the product) of 200% and 100% db apple samples was approximately 3%, at low freezing velocity (V-). Whereas, it was lower than 0.5% for apple samples with 30% db water content. Moreover, the impact of freezing velocity on EW was significant and very important only for high water content samples. For samples whose water content was lower than 100% db, firmness (maximum puncture force) was as higher as the water content was lower, without any insignificant impact of freezing velocity.Keywords: dehydrofreezing, instant controlled pressure drop DIC, freezing time, texture
Procedia PDF Downloads 38011358 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools
Authors: Youmen Chaaban, Maha Ellili-Cherif
Abstract:
The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.Keywords: educational technology integration, Qatar, EFL, independent schools, ICT
Procedia PDF Downloads 38311357 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron
Authors: Liqiang Gong, Hanguang Fu
Abstract:
In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations
Procedia PDF Downloads 6511356 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil
Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai
Abstract:
Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state
Procedia PDF Downloads 14311355 The Usage of Artificial Intelligence in Instagram
Authors: Alanod Alqasim, Yasmine Iskandarani, Sita Algethami, Jawaher alzughaiby
Abstract:
This study focuses on the usage of AI (Artificial Intelligence) systems and features on the Instagram application and how it influences user experience and satisfaction. The aim is to evaluate the techniques and current capabilities, restrictions, and potential future directions of AI in an Instagram application. Following a concise explanation of the core concepts underlying AI usage on Instagram. To answer this question, 19 randomly selected users were asked to complete a 9-question survey on their experience and satisfaction with the app's features (Filters, user preferences, translation tool) and authenticity. The results revealed that there were three prevalent allegations. These declarations include that Instagram has an extremely attractive user interface; secondly, Instagram creates a strong sense of community; and lastly, Instagram has an important influence on mental health.Keywords: AI (Artificial Intelligence), instagram, features, satisfaction, experience
Procedia PDF Downloads 8211354 Batch Biodrying of Pulp and Paper Secondary Sludge: Influence of Initial Moisture Content on the Process
Authors: César Huiliñir, Danilo Villanueva, Pedro Iván Alvarez, Francisco Cubillos
Abstract:
Biodrying aims at removing water from biowastes and has been mostly studied for municipal solid wastes (MSW), while few studies have dealt with secondary sludge from the paper and pulp industry. The goal of this study was to investigate the effect of initial moisture content (MC) on the batch biodrying of pulp and paper secondary sludge, using rice husks as bulking agents. Three initial MCs were studied (54, 65, and 74% w.b.) in closed batch laboratory-scale reactors under adiabatic conditions and with a constant air-flow rate (0.65 l min-1 kg-1 wet solid). The initial MC of the mixture of secondary sludge and rice husks showed a significant effect on the biodrying process. Using initial moisture content between 54-65% w.b., the solid moisture content was reduce up to 37 % w.b. in ten days, getting calorific values between 8000-9000 kJ kg-1. It was concluded that a decreasing of initial MC improves the drying rate and decreases the solid volatile consumption, therefore, the optimization of biodrying should consider this parameter.Keywords: biodrying, secondary sludge, initial moisture content, pulp and paper industry, rice husk
Procedia PDF Downloads 50911353 Gas Condensing Unit with Inner Heat Exchanger
Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga
Abstract:
Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.Keywords: gas condensing unit, filling, inner heat exchanger, package, spraying, tunes
Procedia PDF Downloads 28811352 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 9911351 The Combined Influences of Salinity, Light and Nitrogen Limitation on the Growth and Biochemical Composition of Nannochloropsis sp. and Tetraselmis sp., Isolated from Penang National Park Coastal Waters, Malaysia
Authors: Mohamed M. Alsull
Abstract:
In the present study, two microalgae species “Nannochloropsis sp. and Tetraselmis sp.” isolated from Penang National Park coastal waters, Malaysia; were cultivated under combined various laboratory conditions “salinity, light, nitrogen limitation and starvation”. Growth rate, dry weight, chlorophyll a content, total lipid and protein contents, were estimated at mid exponential growth phase. Both Nannochloropsis sp. and Tetraselmis sp. showed remarkable decrease in growth rate, chlorophyll a content and protein content companied with increase in lipid content under nitrogen limitation and starvation conditions. Maintaining Nannochloropsis sp. under salinity 15‰ caused only significant decrease in total protein content; while Tetraselmis sp. grown at the same salinity caused decrease in the growth rate, chlorophyll a, dry weight and total protein content only when nitrogen was available.Keywords: biochemical composition, light, microalgae, nitrogen limitation, salinity
Procedia PDF Downloads 42711350 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 25411349 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions
Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy
Abstract:
A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.Keywords: gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses
Procedia PDF Downloads 35011348 Independent Encryption Technique for Mobile Voice Calls
Authors: Nael Hirzalla
Abstract:
The legality of some countries or agencies’ acts to spy on personal phone calls of the public became a hot topic to many social groups’ talks. It is believed that this act is considered an invasion to someone’s privacy. Such act may be justified if it is singling out specific cases but to spy without limits is very unacceptable. This paper discusses the needs for not only a simple and light weight technique to secure mobile voice calls but also a technique that is independent from any encryption standard or library. It then presents and tests one encrypting algorithm that is based of frequency scrambling technique to show fair and delay-free process that can be used to protect phone calls from such spying acts.Keywords: frequency scrambling, mobile applications, real-time voice encryption, spying on calls
Procedia PDF Downloads 47911347 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries
Authors: Fatma Abdedayem
Abstract:
We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW
Procedia PDF Downloads 29711346 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 8511345 Effect of Plant Nutrients on Anthocyanin Content and Yield Component of Black Glutinous Rice Plants
Authors: Chonlada Bennett, Phumon Sookwong, Sakul Moolkam, Sivapong Naruebal Sugunya Mahatheeranont
Abstract:
The cultivation of black glutinous rice rich in anthocyanins can provide great benefits to both farmers and consumers. Total anthocyanins content and yield component data of black glutinous rice cultivar (KHHK) grown with the addition of mineral elements (Ca, Mg, Cu, Cr, Fe and Se) under soilless conditions were studied. Ca application increased seed anthocyanins content by three-folds compared to controls. Cu application to rice plants obtained the highest number of grains panicle, panicle length and subsequently high panicle weight. Se application had the largest effect on leaf anthocyanins content, the number of tillers, number of panicles and 100-grain weight. These findings showed that the addition of mineral elements had a positive effect on increasing anthocyanins content in black rice plants and seeds as well as the heightened development of black glutinous rice plant growth.Keywords: Anthocyanins, Black Glutinous Rice, Mineral Elements, Soilless Culture
Procedia PDF Downloads 14411344 Chemical Properties of Yushania alpina and Bamusa oldhamii Bamboo Species
Authors: Getu Dessalegn Asfaw, Yalew Dessalegn Asfaw
Abstract:
This research aims to examine the chemical composition of bamboo species in Ethiopia under the effect of age and culm height. The chemical composition of bamboo species in Ethiopia has not been investigated so far. The highest to the lowest cellulose and hemicellulose contents are Injibara (Y. alpina), Mekaneselam (Y. alpina), and Kombolcha (B. oldhamii), whereas lignin, extractives, and ash contents are Kombolcha, Mekanesealm, and Injibra, respectively. As a result of this research, the highest and lowest cellulose, hemicelluloses and lignin contents are at the age of 2 and 1 year old, respectively. Whereas extractives and ash contents are decreased at the age of the culm matured. The cellulose, hemicelluloses, lignin, and ash contents of the culm increase from the bottom to top along the height, however, extractive contents decrease from the bottom to top position. The cellulose content of Injibara, Kombolch, and Mekaneselam bamboo was recorded at 51±1.7–53±1.8%, 45±1.6%–48±1.5%, and 48±1.8–51±1.6%, and hemicelluloses content was measured at 20±1.2–23±1.1%, 17±1.0–19±0.9%, and 18±1.0–20±1.0%, lignin content was measured 19±1.0–21±1.1%, 27±1.2–29±1.1%, and 21±1.1–24±1.1%, extractive content was measured 3.9±0.2 –4.5±0.2%, 6.6±0.3–7.8±0.4%, and 4.7±0.2–5.2±0.1%, ash content was measured 1.6±0.1–2.1±0.1%, 2.8±0.1–3.5±0.2%, and 1.9±0.1–2.5±0.1% at the ages of 1–3 years old, respectively. This result demonstrated that bamboo species in Ethiopia can be a source of feedstock for lignocelluloses ethanol and bamboo composite production since they have higher cellulose content.Keywords: age, bamboo species, culm height, chemical composition
Procedia PDF Downloads 10711343 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 30311342 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 4511341 The Effect of Addition of White Mulberry Fruit on the Polyphenol Content in the New Developed Bioactive Bread
Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata
Abstract:
In recent years, proceed to the attractiveness of typical bakery products. Expanding the education and nutrition knowledge society will develop the production of functional foods, which has a positive impact on human health. Therefore, the aim of the present study was to evaluate the effect of the addition of white mulberry fruit on the content of biologically active compounds in the new designed functional bread premixes designed for selected disease: anemia, diabetes, obesity and cardiovascular disease. For flavonols and phenolic acids content UPLC was conducted, using an NovaPack C18 column and a gradient elution system. It was found that all attempts bread characterized by a high content of biologically active compounds: polyphenols, phenolic acids, and flavonoids. The highest total content of polyphenolic compounds found in the samples of bread for anemia, diabetes and cardiovascular disease both before and after storage. The analyzed sample differed in content of phenolic acids. The highest content of these compounds were found in samples of bread for anemia and diabetes. It was found that the analyzed sample contained phenolic acids that are derivatives of hydroxybenzoic and hydroxycinnamic acid. The new designed bread contained significant amounts of flavonols, of which the dominant was routine.Keywords: mulberry, antioxidant, polyphenols, phenolic acids, flavonols
Procedia PDF Downloads 41611340 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques
Authors: Imed Feki, Faouzi Msahli
Abstract:
Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique
Procedia PDF Downloads 60511339 Control of Oil Content of Fried Zucchini Slices by Partial Predrying and Process Optimization
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Main concern about deep-fat-fried food materials is their high final oil contents absorbed during frying process and/or after cooling period, since diet including high content of oil is accepted unhealthy by consumers. Different methods have been evaluated to decrease oil content of fried food stuffs. One promising method is partially drying of food material before frying. In the present study it was aimed to control and decrease the final oil content of zucchini slices by means of partial drying and to optimize process conditions. Conventional oven drying was used to decrease moisture content of zucchini slices at a certain extent. Process performance in terms of oil uptake was evaluated by comparing oil content of predried and then fried zucchini slices with those determined for directly fried ones. For predrying and frying processes, oven temperature and weight loss and frying oil temperature and time pairs were controlled variables, respectively. Zucchini slices were also directly fried for sensory evaluations revealing preferred properties of final product in terms of surface color, moisture content, texture and taste. These properties of directly fried zucchini slices taking the highest score at the end of sensory evaluation were determined and used as targets in optimization procedure. Response surface methodology was used for process optimization. The properties, determined after sensory evaluation, were selected as targets; meanwhile oil content was aimed to be minimized. Results indicated that final oil content of zucchini slices could be reduced from 58% to 46% by controlling conditions of predrying and frying processes. As a result, it was suggested that predrying could be one choose to reduce oil content of fried zucchini slices for health diet. This project (113R015) has been supported by TUBITAK.Keywords: health process, optimization, response surface methodology, oil uptake, conventional oven
Procedia PDF Downloads 36611338 'Pink' Waxapple Response to Salinity: Growth and Nutrient Uptake
Authors: Shang-Han Tsai, Yong-Hong Lin, Chung-Ruey Yen
Abstract:
Wax apple is an important tropical fruit in Taiwan. The famous producing area is located on the coast in Pingtung county. Land subsidence and climate change will tend to soil alkalization more seriously. This study was to evaluate the effects of NaCl in wax apple seedlings. NaCl salinity reduced wax apple shoot growth, it may due to reducing relative water content in leaf and new shoot. Leaf Cl and Na concentration were increased but K, Ca, and Mg content had no significant difference after irrigated with NaCl for six weeks. In roots, Na and Cl content increase significantly with 90 mM NaCl treatment, but K, Ca, and Mg content was reduced. 30-90 mM Nacl treatment do not affect K/Na, Ca/Na, and Mg/Na ratio, but decrease significantly in 90 mM treatment in roots. The leaf and root electrolyte leakage were significantly affected by 90 mM NaCl treatment. Suggesting 90 mM was optimum concentration for sieve out other tolerance wax apple verities.Keywords: growth, NaCl stress, nutrient, wax apple
Procedia PDF Downloads 35911337 Face Recognition Using Discrete Orthogonal Hahn Moments
Authors: Fatima Akhmedova, Simon Liao
Abstract:
One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work, we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, non-redundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.Keywords: face recognition, Hahn moments, recognition-by-parts, time-lapse
Procedia PDF Downloads 37511336 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area
Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi
Abstract:
As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning
Procedia PDF Downloads 11611335 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 7511334 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 15911333 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 34611332 Content and Langauge Integrated Learning: English and Art History
Authors: Craig Mertens
Abstract:
Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.Keywords: art history, EFL, content and language integration learning, critical thinking
Procedia PDF Downloads 59711331 Random Subspace Ensemble of CMAC Classifiers
Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi
Abstract:
The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.Keywords: classification, random subspace, ensemble, CMAC neural network
Procedia PDF Downloads 329