Search results for: forest fire detection
1377 Fabrication of Biosensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste Electrode for Determination of Anti-Hypertensive and Prostatic Hyperplasia Drug Terazosin
Authors: Amira M. Hassanein, Nehal A. Salahuddin, Atsunori Matsuda, Toshiaki Hattori, Mona N. Elfiky
Abstract:
New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide- Dodecyl Sulphate/Polypyrrole nanocomposites which were synthesized by in-situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant Dodecyl sulphate as a modifier. The morphology and surface area of the nanocomposites changed with the percentage of Pyrrole. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol.L-1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable, and free from interference by other commonly present excipients in drug formulations.Keywords: layered double hydroxide, polypyrrole, terazosin hydrochloride, square-wave adsorptive anodic stripping voltammetry
Procedia PDF Downloads 2211376 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 4881375 An Emergence of Pinus taeda Needle Defoliation and Tree Mortality in Alabama, USA
Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt
Abstract:
Pinus taeda, commonly known as loblolly pine, is a crucial timber species native to the southeastern USA. An emerging problem has been encountered for the past few years, which is better to be known as loblolly pine needle defoliation (LPND), which is threatening the ecological health of southeastern forests and economic vitality of the region’s timber industry. Currently, more than 1000 hectares of loblolly plantations in Alabama are affected with similar symptoms and have created concern among southeast landowners and forest managers. However, it is still uncertain whether LPND results from one or the combination of several fungal pathogens. Therefore, the objectives of the study were to identify and characterize the fungi associated with LPND in the southeastern USA and document the damage being done to loblolly pine as a result of repeated defoliation. Identification of fungi was confirmed using classical morphological methods (microscopic examination of the infected needles), conventional and species-specific priming (SSPP) PCR, and ITS sequencing. To date, 17 species of fungi, either cultured from pine needles or formed fruiting bodies on pine needles, were identified based on morphology and genetic sequence data. Among them, brown-spot pathogen Lecanostica acicola has been frequently recovered from pine needles in both spring and summer. Moreover, Ophistomatoid fungi such as Leptographium procerum, L. terebrantis are associated with pine decline have also been recovered from root samples of the infected stands. Trees have been increasingly and repeatedly chlorotic and defoliated from 2019 to 2020. Based on morphological observations and molecular data, emerging loblolly pine needle defoliation is due in larger part to the brown-spot pathogen L. acoicola followed by pine decline pathogens L. procerum and L. terebrantis. Root pathogens were suspected to emerge later, and their cumulative effects contribute to the widespread mortality of the trees. It is more likely that longer wet spring and warmer temperatures are favorable to disease development and may be important in the disease ecology of LPND. Therefore, the outbreak of the disease is assumed to be expanded over a large geographical area in a changing climatic condition.Keywords: brown-spot fungi, emerging disease, defoliation, loblolly pine
Procedia PDF Downloads 1391374 A Historical Overview of the General Implementation of the European Union Market Abuse Directive in the United Kingdom before the Brexit and Its Future Implications
Authors: Howard Chitimira
Abstract:
The European Union (EU) was probably the first body to establish multinational anti-market abuse laws aimed at enhancing the detection and curbing of cross-border market abuse activities in its member states. Put differently, the EU Insider Dealing Directive was adopted in 1989 and was the first law that harmonised the insider trading ban among the EU member states. Thereafter, the European Union Directive on Insider Dealing and Market Manipulation (EU Market Abuse Directive) was adopted in a bid to improve and effectively discourage all the forms of market abuse in the EU’s securities and financial markets. However, the EU Market Abuse Directive had its own gaps and flaws. In light of this, the Market Abuse Regulation and the Criminal Sanctions for Market Abuse Directive were enacted to repeal and replace the EU Market Abuse Directive in 2016. The article examines the adequacy of the EU Market Abuse Directive and its implementation in the United Kingdom (UK) prior to the British exit (Brexit). This is done to investigate the possible implications of the Brexit referendum outcome of 23 June 2016 on the future regulation of market abuse in the UK.Keywords: market abuse, insider trading, market manipulation, European Union, United Kingdom
Procedia PDF Downloads 2521373 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 3271372 Location-Domination on Join of Two Graphs and Their Complements
Authors: Analen Malnegro, Gina Malacas
Abstract:
Dominating sets and related topics have been studied extensively in the past few decades. A dominating set of a graph G is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. Some problems involving detection devices can be modeled with graphs. Finding the minimum number of devices needed according to the type of devices and the necessity of locating the object gives rise to locating-dominating sets. A subset S of vertices of a graph G is called locating-dominating set, LD-set for short, if it is a dominating set and if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. The location-domination number λ(G) is the minimum cardinality of an LD-set for G. The complement of a graph G is a graph Ḡ on same vertices such that two distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G. An LD-set of a graph G is global if it is an LD-set of both G and its complement Ḡ. The global location-domination number λg(G) is defined as the minimum cardinality of a global LD-set of G. In this paper, global LD-sets on the join of two graphs are characterized. Global location-domination numbers of these graphs are also determined.Keywords: dominating set, global locating-dominating set, global location-domination number, locating-dominating set, location-domination number
Procedia PDF Downloads 1841371 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications
Authors: B. G. Sheeparamatti, J. S. Kadadevarmath
Abstract:
Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other.Keywords: electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors
Procedia PDF Downloads 3991370 Monitoring Saltwater Corrosion on Steel Samples Using Coda Wave Interferometry in MHZ Frequencies
Authors: Maxime Farin, Emmanuel Moulin, Lynda Chehami, Farouk Benmeddour, Pierre Campistron
Abstract:
Assessing corrosion is crucial in the petrochemical and marine industry. Usual ultrasonic methods based on guided waves to detect corrosion can inspect large areas but lack precision. We propose a complementary and sensitive ultrasonic method (~ 10 MHz) based on coda wave interferometry to detect and quantify corrosion at the surface of a steel sample. The method relies on a single piezoelectric transducer, exciting the sample and measuring the scattered coda signals at different instants in time. A laboratory experiment is conducted with a steel sample immersed in salted water for 60~h with parallel coda and temperature measurements to correct coda dependence to temperature variations. Micrometric changes to the sample surface caused by corrosion are detected in the late coda signals, allowing precise corrosion detection. Moreover, a good correlation is found between a parameter quantifying the temperature-corrected stretching of the coda over time with respect to a reference without corrosion and the corrosion surface over the sample recorded with a camera.Keywords: coda wave interferometry, nondestructive evaluation, corrosion, ultrasonics
Procedia PDF Downloads 2341369 Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer
Authors: Noraishah Othman, Siti K. Kamarudin, Norinsan K. Othman, Mohd S. Takriff, Masli I. Rosli, Engku M. Fahmi, Mior A. Khusaini
Abstract:
The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B.Keywords: hybrid impeller, residence time distribution (RTD), radiotracer experiments, RTD model
Procedia PDF Downloads 3581368 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 4011367 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life
Authors: Desplanches Maxime
Abstract:
Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression
Procedia PDF Downloads 701366 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography
Authors: Sh. Najari Moghadam, M. Qomi, F. Raofie, J. Khadiv
Abstract:
In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then, it was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME, some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.Keywords: biological samples, cyproheptadine, hollow fiber, liquid phase microextraction
Procedia PDF Downloads 2871365 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 4161364 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey
Authors: Lee Suan Chua
Abstract:
This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90 °C for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was reported due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90 °C.Keywords: honey colour, hydroxylmethylfurfural, thermal treatment, tualang honey
Procedia PDF Downloads 3771363 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method
Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir
Abstract:
The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection
Procedia PDF Downloads 1131362 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 4011361 Competitive Effects of Differential Voting Rights and Promoter Control in Indian Start-Ups
Authors: Prateek Bhattacharya
Abstract:
The definition of 'control' in India is a rapidly evolving concept, owing to varying rights attached to varying securities. Shares with differential voting rights (DVRs) provide the holder with differential rights as to voting, as compared to ordinary equity shareholders of the company. Such DVRs can amount to both superior voting rights and inferior voting rights, where DVRs with superior voting rights amount to providing the holder with golden shares in the company. While DVRs are not a novel concept in India having been recognized since 2000, they were placed on a back burner by the Securities and Exchange Board of India (SEBI) in 2010 after issuance of DVRs with superior voting rights was restricted. In June 2019, the SEBI rekindled the ebbing fire of DVRs, keeping mind the fast-paced nature of the global economy, the government's faith that India’s ‘new age technology companies’ (i.e., Start-Ups) will lead the charge in achieving its goal of India becoming a $5 trillion dollar economy by 2024, and recognizing that the promoters of such Start-Ups seek to raise capital without losing control over their companies. DVRs with superior voting rights guarantee promoters with up to 74% shareholding in Start-Ups for a period of 5 years, meaning that the holder of such DVRs can exercise sole control and material influence over the company for that period. This manner of control has the potential of causing both pro-competitive and anti-competitive effects in the markets where these companies operate. On the one hand, DVRs will allow Start-Up promoters/founders to retain control of their companies and protect its business interests from foreign elements such as private/public investors – in a scenario where such investors have multiple investments in firms engaged in associated lines of business (whether on a horizontal or vertical level) and would seek to influence these firms to enter into potential anti-competitive arrangements with one another, DVRs will enable the promoters to thwart such scenarios. On the other hand, promoters/founders who themselves have multiple investments in Start-Ups, which are in associated lines of business run the risk of influencing these associated Start-Ups to engage in potentially anti-competitive arrangements in the name of profit maximisation. This paper shall be divided into three parts: Part I shall deal with the concept of ‘control’, as deliberated upon and decided by the SEBI and the Competition Commission of India (CCI) under both company/securities law and competition law; Part II shall review this definition of ‘control’ through the lens of DVRs, and Part III shall discuss the aforementioned potential pro-competitive and anti-competitive effects caused by the DVRs by examining the current Indian Start-Up scenario. The paper shall conclude by providing suggestions for the CCI to incorporate a clearer and more progressive concept of ‘control’.Keywords: competition law, competitive effects, control, differential voting rights, DVRs, investor shareholding, merger control, start-ups
Procedia PDF Downloads 1241360 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems
Authors: Kaan Karaoglu, Raif Bayir
Abstract:
In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning
Procedia PDF Downloads 751359 The Evolution of Traditional Rhythms in Redefining the West African Country of Guinea
Authors: Janice Haworth, Karamoko Camara, Marie-Therèse Dramou, Kokoly Haba, Daniel Léno, Augustin Mara, Adama Noël Oulari, Silafa Tolno, Noël Zoumanigui
Abstract:
The traditional rhythms of the West African country of Guinea have played a centuries-long role in defining the different people groups that make up the country. Throughout their history, before and since colonization by the French, the different ethnicities have used their traditional music as a distinct part of their historical identities. That is starting to change. Guinea is an impoverished nation created in the early twentieth-century with little regard for the history and cultures of the people who were included. The traditional rhythms of the different people groups and their heritages have remained. Fifteen individual traditional Guinean rhythms were chosen to represent popular rhythms from the four geographical regions of Guinea. Each rhythm was traced back to its native village and video recorded on-site by as many different local performing groups as could be located. The cyclical patterns rhythms were transcribed via a circular, spatial design and then copied into a box notation system where sounds happening at the same time could be studied. These rhythms were analyzed for their consistency-over-performance in a Fundamental Rhythm Pattern analysis so rhythms could be compared for how they are changing through different performances. The analysis showed that the traditional rhythm performances of the Middle and Forest Guinea regions were the most cohesive and showed the least evidence of change between performances. The role of music in each of these regions is both limited and focused. The Coastal and High Guinea regions have much in common historically through their ethnic history and modern-day trade connections, but the rhythm performances seem to be less consistent and demonstrate more changes in how they are performed today. In each of these regions the role and usage of music is much freer and wide-spread. In spite of advances being made as a country, different ethnic groups still frequently only respond and participate (dance and sing) to the music of their native ethnicity. There is some evidence that this self-imposed musical barrier is beginning to change and evolve, partially through the development of better roads, more access to electricity and technology, the nation-wide Ebola health crisis, and a growing self-identification as a unified nation.Keywords: cultural identity, Guinea, traditional rhythms, west Africa
Procedia PDF Downloads 3941358 COVID Prevention and Working Environmental Risk Prevention and Buisness Continuety among the Sme’s in Selected Districts in Sri Lanka
Authors: Champika Amarasinghe
Abstract:
Introduction: Covid 19 pandemic was badly hit to the Sri Lankan economy during the year 2021. More than 65% of the Sri Lankan work force is engaged with small and medium scale businesses which no doubt that they had to struggle for their survival and business continuity during the pandemic. Objective: To assess the association of adherence to the new norms during the Covid 19 pandemic and maintenance of healthy working environmental conditions for business continuity. A cross sectional study was carried out to assess the OSH status and adequacy of Covid 19 preventive strategies among the 200 SME’S in selected two districts in Sri Lanka. These two districts were selected considering the highest availability of SME’s. Sample size was calculated, and probability propionate to size was used to select the SME’s which were registered with the small and medium scale development authority. An interviewer administrated questionnaire was used to collect the data, and OSH risk assessment was carried out by a team of experts to assess the OSH status in these industries. Results: According to the findings, more than 90% of the employees in these industries had a moderate awareness related to COVID 19 disease and preventive strategies such as the importance of Mask use, hand sainting practices, and distance maintenance, but the only forty percent of them were adhered to implementation of these practices. Furthermore, only thirty five percent of the employees and employers in these SME’s new the reasons behind the new norms, which may be the reason for reluctance to implement these strategies and reluctance to adhering to the new norms in this sector. The OSH risk assessment findings revealed that the working environmental organization while maintaining the distance between two employees was poor due to the inadequacy of space in these entities. More than fifty five percent of the SME’s had proper ventilation and lighting facilities. More than eighty five percent of these SME’s had poor electrical safety measures. Furthermore, eighty two percent of them had not maintained fire safety measures. Eighty five percent of them were exposed to heigh noise levels and chemicals where they were not using any personal protectives nor any other engineering controls were not imposed. Floor conditions were poor, and they were not maintaining the occupational accident nor occupational disease diseases. Conclusions: Based on the findings, proper awareness sessions were carried out by NIOSH. Six physical training sessions and continues online trainings were carried out to overcome these issues, which made a drastic change in their working environments and ended up with hundred percent implementation of the Covid 19 preventive strategies, which intern improved the worker participation in the businesses. Reduced absentees and improved business opportunities, and continued their businesses without any interruption during the third episode of Covid 19 in Sri Lanka.Keywords: working environment, Covid 19, occupational diseases, occupational accidents
Procedia PDF Downloads 881357 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 1341356 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves
Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar
Abstract:
Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly
Procedia PDF Downloads 2561355 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 871354 Semantic Differential Technique as a Kansei Engineering Tool to Enquire Public Space Design Requirements: The Case of Parks in Tehran
Authors: Nasser Koleini Mamaghani, Sara Mostowfi
Abstract:
The complexity of public space design makes it difficult for designers to simultaneously consider all issues for thorough decision-making. Among public spaces, the public space around people’s house is the most prominent space that affects and impacts people’s daily life. Considering recreational public spaces in cities, their main purpose would be to design for experiences that enable a deep feeling of peace and a moment of being away from the hectic daily life. Respecting human emotions and restoring natural environments, although difficult and to some extent out of reach, are key issues for designing such spaces. In this paper we propose to analyse the structure of recreational public spaces and the related emotional impressions. Furthermore, we suggest investigating how these structures influence people’s choice for public spaces by using differential semantics. According to Kansei methodology, in order to evaluate a situation appropriately, the assessment variables must be adapted to the user’s mental scheme. This means that the first step would have to be the identification of a space’s conceptual scheme. In our case study, 32 Kansei words and 4 different locations, each with a different sensual experience, were selected. The 4 locations were all parks in the city of Tehran (Iran), each with a unique structure and artifacts such as a fountain, lighting, sculptures, and music. It should be noted that each of these parks has different combination and structure of environmental and artificial elements like: fountain, lightning, sculpture, music (sound) and so forth. The first one was park No.1, a park with natural environment, the selected space was a fountain with motion light and sculpture. The second park was park No.2, in which there are different styles of park construction: ways from different countries, the selected space was traditional Iranian architecture with a fountain and trees. The third one was park No.3, the park with modern environment and spaces, and included a fountain that moved according to music and lighting. The fourth park was park No.4, the park with combination of four elements: water, fire, earth, wind, the selected space was fountains squirting water from the ground up. 80 participant (55 males and 25 females) aged from 20-60 years participated in this experiment. Each person filled the questionnaire in the park he/she was in. Five-point semantic differential scale was considered to determine the relation between space details and adjectives (kansei words). Received data were analyzed by multivariate statistical technique (factor analysis using SPSS statics). Finally the results of this analysis are criteria as inspiration which can be used in future space designing for creating pleasant feeling in users.Keywords: environmental design, differential semantics, Kansei engineering, subjective preferences, space
Procedia PDF Downloads 4081353 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG
Procedia PDF Downloads 2921352 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes
Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suriani Abu Bakar
Abstract:
Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applicationsKeywords: calixarene, multiwalled carbon nanotubes, cadmium, surface potential
Procedia PDF Downloads 4941351 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses
Authors: Abid Hussain, Binay Kumar
Abstract:
Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization
Procedia PDF Downloads 1361350 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 2581349 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4611348 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 130