Search results for: computer game-based learning
5626 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University - Research Methodology and Preliminary Findings
Authors: Annette Cosgrove, Carina Ginty, Tony Hall, Cornelia Connolly
Abstract:
The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitization of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence-based digital teaching model for use in a future pandemic. The research strategy undertaken for this study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially, feedback was collected and the research instrument was edited to reflect this feedback before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioner's views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology-enhanced learning and on teaching practice in a higher education institution. The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice. This study includes quantitative and qualitative methods to elicit data that will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments/data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers. This research is currently being conducted across the ATU multi-site campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a West of Ireland university, is the focus of the study. The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi-formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning. This paper will present initial findings, reflections and data from this ongoing research study.Keywords: TEL, technology, digital, education
Procedia PDF Downloads 815625 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1345624 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 3235623 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach
Authors: Keyvanl Yahya
Abstract:
This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm
Procedia PDF Downloads 3975622 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 1375621 Prevention of Student Radicalism in School through Civic Education
Authors: Triyanto
Abstract:
Radicalism poses a real threat to Indonesia's future. The target of radicalism is the youth of Indonesia. This is proven by the majority of terrorists are young people. Radicalization is not only a repressive act but also requires educational action. One of the educational efforts is civic education. This study discusses the prevention of radicalism for students through civic education and its constraints. This is qualitative research. Data were collected through literature studies, observations and in-depth interviews. Data were validated by triangulation. The sample of this research is 30 high school students in Surakarta. Data were analyzed by the interactive model of analysis from Miles & Huberman. The results show that (1) civic education can be a way of preventing student radicalism in schools in the form of cultivating the values of education through learning in the classroom and outside the classroom; (2) The obstacles encountered include the lack of learning facilities, the limited ability of teachers and the low attention of students to the civic education.Keywords: prevention, radicalism, senior high school student, civic education
Procedia PDF Downloads 2325620 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1365619 Exploration of Competitive Athletes’ Superstition in Taiwan: “Miracle” and “Coincidence”
Authors: Shieh Shiow-Fang
Abstract:
Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interviews to collect their experiences about sports superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.Keywords: superstition, taboo awarences, competitive athlete, learning norms
Procedia PDF Downloads 765618 TimeTune: Personalized Study Plans Generation with Google Calendar Integration
Authors: Chevon Fernando, Banuka Athuraliya
Abstract:
The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.Keywords: personalized learning, study planner, time management, calendar integration
Procedia PDF Downloads 495617 Training 'Green Ambassadors' in the Community-Action Learning Course
Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia
Abstract:
The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.Keywords: air pollution, green ambassador, recycling, renewable energy
Procedia PDF Downloads 2425616 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 1825615 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm
Authors: Kamel Belammi, Houria Fatrim
Abstract:
imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes
Procedia PDF Downloads 5325614 Effect of Online Mindfulness Training to Tertiary Students’ Mental Health: An Experimental Research
Authors: Abigaile Rose Mary R. Capay, Janne Ly Castillon-Gilpo, Sheila A. Javier
Abstract:
The transition to online learning has been a challenging feat on the mental health of tertiary students. This study investigated whether learning mindfulness strategies online would help in improving students’ imagination, conscientiousness, extraversion, agreeableness and emotional stability, as measured by the International Personality Item Pool (IPIP) Big Five Factor Markers, as well as their dispositional mindfulness as measured by the Mindfulness Attention Awareness Scale (MAAS). Fifty-two college students participated in the experiment. The 23 participants assigned to the treatment condition received 6-weekly experiential sessions of online mindfulness training and were advised to follow a daily mindfulness practice, while the 29 participants from the control group only received a 1-hour lecture. Scores were collected at pretest and posttest. Findings show that there was a significant difference in the pretest and posttest scores of students assigned in the treatment group, likewise medium effect sizes in the variables: dispositional mindfulness (t (22) = 2.64, p = 0.015, d = .550), extraversion (t (22) = 2.76, p = 0.011, d = 0.575), emotional stability (t (22) = 2.99, p = 0.007, d = .624), conscientiousness (t (22) = 2.74, p = 0.012, d = .572) and imagination (t (22) = 4.08, p < .001), but not for agreeableness (t (22) = 2.01, p = 0.057, d = .419). No significant differences were observed on the scores of the control group. Educational institutions are recommended to consider teaching basic mindfulness strategies to tertiary students, as a valuable resource in improving their mental health as they navigate through adjustments in online learning.Keywords: mindfulness, school-based interventions, MAAS, IPIP Big Five Markers, experiment
Procedia PDF Downloads 585613 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 2325612 Problems in Lifelong Education Course in Information and Communication Technology
Authors: Hisham Md.Suhadi, Faaizah Shahbodin, Jamaluddin Hashim, Nurul Huda Mahsudi, Mahathir Mohd Sarjan
Abstract:
The study is the way to identify the problems that occur in organizing short courses lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang, Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed that there are the problems occur in organizing the short course for lifelong learning in ICT education.Keywords: lifelong Education, information and communication technology, short course, ICT education, courses administrative
Procedia PDF Downloads 4565611 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm
Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio
Abstract:
The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.Keywords: algorithm, CoAP, DoS, IoT, machine learning
Procedia PDF Downloads 805610 Munting Kamay, Munting Gawa: Children's Development Training, a UCU Experience
Authors: Elizabeth A. Montero
Abstract:
The project contemplated in this study particularly aimed at enabling public school children of ages ten to twelve who belong to low and middle income families. The pupils were provided training on communication, work, computer and social skills. In this study, the researcher hypothesized that children given the opportunity to develop a skill through guidance and proper supervision will significantly learn, improve and develop a skill. Since children’s minds are highly absorbent like a sponge absorbing anything within its capacity to take, it is ideal and necessary that education should provide an environment that is rich offering an array of meaningful experiences. The context of this study is well balanced since it catered to the children’s communication, work, computer and social skills.Keywords: Munting Kamay, Munting Gawa, children’s development training, UCU experience
Procedia PDF Downloads 4375609 The Impact of Intercultural Communicative Competence on the Academic Achievement of English Language Learners: Students Working in the Sector of Tourism in Jordan (Petra and Jerash) as a Case Study
Authors: Haneen Alrawashdeh, Naciye Kunt
Abstract:
Intercultural communicative competence or (ICC), is an extension of communicative competence that takes into account the intercultural aspect of learning a foreign language. Accordingly, this study aimed at investigating the intercultural interaction impact on English as a foreign language learners' academic achievement of language as a scholastic subject and their motivation towards learning it. To achieve the aim of the study, a qualitative research approach was implemented by means of semi-structured interviews. Interview sessions were conducted with eight teachers of English as well as ten English language learners who work in the tourism industry in a variety of career paths, such as selling antiques and traditional costumes. An analysis of learners' grades of English subjects from 2014 to 2019 academic years was performed by using the Open Education Management Information System Database in Jordan to support the findings of the study. The results illustrated that due to the fact that they work in the tourism sector, students gain skills and knowledge that assist them in better academic achievement in the subject of English by practicing intercultural communication with different nationalities on a daily basis; intercultural communication enhances students speaking skills, lexicon, and fluency; however, despite that their grades showed increasing, from teachers perspectives, intercultural communicative competence reduces their linguistic accuracy and ability to perform English academic writing in academic contexts such as exams.Keywords: intercultural communicative competence, Jordan, language learning motivation, language academic achievement
Procedia PDF Downloads 2085608 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks
Authors: Albert Acheampong, Tamer Elshandidy
Abstract:
We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive
Procedia PDF Downloads 775607 The Development of Web Based Instruction on Puppet Show
Authors: Piyanut Sujit
Abstract:
The purposes of this study were to: 1) create knowledge and develop web based instruction on the puppet show, 2) evaluate the effectiveness of the web based instruction on the puppet show by using the criteria of 80/80, and 3) compare and analyze the achievement of the students before and after learning with web based instruction on the puppet show. The population of this study included 53 students in the Program of Library and Information Sciences who registered in the subject of Reading and Reading Promotion in semester 1/2011, Suansunandha Rajabhat University. The research instruments consisted of web based instruction on the puppet show, specialist evaluation form, achievement test, and tests during the lesson. The research statistics included arithmetic mean, variable means, standard deviation, and t-test in SPSS for Windows. The results revealed that the effectiveness of the developed web based instruction was 84.67/80.47 which was higher than the set criteria at 80/80. The student achievement before and after learning showed statistically significant difference at 0.05 as in the hypothesis.Keywords: puppet, puppet show, web based instruction, library and information sciences
Procedia PDF Downloads 3675606 [Keynote Talk]: Pragmatic Leadership in School Organization and Research in Physical Education Professional Development
Authors: Ellie Abdi
Abstract:
This paper is a review of a recently published book (April 2018) by Dr. Ellie Abdi. The book divides into two sections of 1) leadership in school organization and 2) pragmatic research in physical education professional development. The first part of the book explores school organizational development in terms of 1) communication development, 2) community development, and 3) decision making development. It concludes to acknowledge that decision making is the heart of educational management. This is while communication and community are essential to the development of the school organization. The role of a leader in a professional learning community (PLC) is acknowledged with the organizational development plan and moves onto 5 overall objectives of a professional development plan. It clarifies that professional learning community (PLC) benefits both students and professionals in education. Furthermore, professional development needs to be involved in opportunities to value diversity and foundations of learning, in addition to search for veteran teachers who offer a rich combination of experience and perspective. School educational platform in terms of teacher training in physical education is discussed in the second part. The book reviews that well-designed programs are powerful and constructive ways to identify the strength and weaknesses of teachers. Post-positivism, constructivism, advocacy/participatory, and pragmatism in teacher education are also disclosed. The book specifically unfolds pragmatic research in professional development of physical education. It provides researchers, doctoral, and masters level students with defined examples. In summary, the book shows how appropriate it is when many different traditions are displayed in a pragmatic way, following the stages of research from development to dissemination.Keywords: leadership, physical education, pragmatic, professional development
Procedia PDF Downloads 1625605 Didactic Suitability and Mathematics Through Robotics and 3D Printing
Authors: Blanco T. F., Fernández-López A.
Abstract:
Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.Keywords: 3D printing, didactic suitability, educational design, robotics
Procedia PDF Downloads 1045604 A Participatory Study in Using Augmented Reality for Teaching Civics in Middle Schools
Authors: E. Sahar
Abstract:
Civic political knowledge is crucial for the stability of democratic countries. In the USA, Americans have poor knowledge about their constitution and their political systems. Some states such as Florida State suffers from a huge decline in civics comparing to the National Average. This study concerns with using new technologies such as augmented reality to engage students in learning civics in classrooms. This is a participatory study, which engage teachers in the process of designing augmented reality civic games. The researcher used survey to find out the materials that teachers struggle with while teaching civics. Four lessons were found the most difficult to teach for middle school students: SS7C1.1 Enlightenment thinkers, SS7C1.2 influencing documents, SS7C1.7-Weakness of the Articles of Confederation, and Forms and systems of governments. For the limited scope of this study, we focused on “Forms and Systems of governments’ as the main project. Augmented Reality is used to help students to engage in learning civics through building a game that is based on the pedagogy constructivism theory. The resulted project meets the educational requirements for civics, provide students with more knowledge in at stake issues such as migration and citizenship, and help them to build leadership skills while playing in groups. The augmented reality game is also designed to test the students learning for each stage. This study helps to generate insightful implications for the use of augmented reality by educators, researchers, instructional designers, and developers who are interested in integrating technology in teaching civics for students in middle school classrooms.Keywords: augmented reality, games, civics teaching, Florida middle school
Procedia PDF Downloads 1225603 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT
Authors: R. R. Ramsheeja, R. Sreeraj
Abstract:
For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification
Procedia PDF Downloads 5095602 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK
Authors: Esther Ekundayo
Abstract:
The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology
Procedia PDF Downloads 975601 Demystifying Board Games for Teachers
Authors: Shilpa Sharma, Lakshmi Ganesh, Mantra Gurumurthy, Shweta Sharma
Abstract:
Board games provide affordances of 21st-century skills like collaboration, critical thinking, and strategy. Board games such as chess, Catan, Battleship, Scrabble, and Taboo can enhance learning in these areas. While board games are popular in informal child settings, their use in formal K-12 education is limited. To encourage teachers to incorporate board games, it's essential to grasp their perceptions and tailor professional development programs accordingly. This paper aims to explore teacher attitudes toward board games and propose interventions to motivate teachers to integrate and create board games in the classroom. A user study was conceived, designed, and administered with teachers (n=38) to understand their experience in playing board games and using board games in the classroom. Purposive sampling was employed as the questionnaire was floated to teacher groups that the authors were aware of. The teachers taught in K-12 affordable private schools. The majority of them had experience ranging from 2-5 years. The questionnaire consisted of questions on teacher perceptions and beliefs of board game usage in the classroom. From the responses, it was observed that ~90% of teachers, though they had experience of playing board games, rarely did it translate to using board games in the classroom. Additionally, it was observed that translating learning objectives to board game objectives is the key factor that teachers consider while using board games in the classroom. Based on the results from the questionnaire, a professional development workshop was co-designed with the objective of motivating teachers to design, create and use board games in the classroom. The workshop is based on the principles of gamification. This is to ensure that the teachers experience a board game in a learning context. Additionally, the workshop is based on the principles of andragogy, such as agency, pertinence, and relevance. The workshop will begin by modifying and reusing known board games in the learning context so that the teachers do not find it difficult and daunting. The intention is to verify the face validity and content validity of the workshop design, orchestration and content with experienced teacher development professionals and education researchers. The results from this study will be published in the full paper.Keywords: board games, professional development, teacher motivation, teacher perception
Procedia PDF Downloads 1075600 Stochastic Simulation of Random Numbers Using Linear Congruential Method
Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano
Abstract:
Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness
Procedia PDF Downloads 3165599 What Do Board Members Learn from Their External Connectedness? The Case of Firm Diversification
Authors: Pei-Gi Shu, Yin-Hua Yeh, Chao-Ting Chen
Abstract:
Using a dataset consisting of 7,120 firm-year observations from the Taiwan stock market over the 2007-2011 sample period, we find a significantly negative relationship between board external connectedness and firm diversification. We propose a learningeffect hypothesis indicating that an externally connected board member’s experiences in other companies directly affect his recommendations regarding the underlying firm’s diversification. The partial correlation between diversification and the performance of firms with externally connected board members is used as a proxy for the learning effect. The empirical results show that the learning effect is asymmetrically embedded in firm diversification, with negative experiences having a greater effect on firm diversification than positive experiences. Externally connected board members are associated with reduced diversification in one firm after they learn that diversification is detrimental to value in other companies. Moreover, the diversification of a firm due to board external connectedness is moderated by the controlling owner’s interest alignment and entrenchment.Keywords: board, external, connectedness, diversification
Procedia PDF Downloads 4625598 Online Versus Offline Learning: A Comparative Analysis of Modes of Education Amidst Pandemic
Authors: Nida B. Syed
Abstract:
Following second wave of the current pandemic COVID-19, education transmission is occurring via both the modes of education, that is, online as well as offline in the college. The aim of the current study was, therefore, to bring forth the comparative analysis of both the modes of education and their impact on the levels of academic stress and states of the mental wellbeing of the students amidst the current pandemic. Measures of the constructs were obtained by the online Google forms, which consist of the Perceptions of Academic Stress Scale (PASS) by and Warwick-Edinburg Mental Well-being Scale, from a sample of 100 undergraduate students aged 19-25 years studying in different colleges of Bengaluru, India. Modes of education were treated as the predictor variables whilst academic stress, and mental wellbeing constituted the criterion variables. Two-way ANOVA was employed. Results show that the levels of academic stress are found to be a bit higher in students attending online classes as compared to those taking offline classes in college (MD = 1.10, df = 98, t = 0.590, p > 0.05), whereas mental wellbeing is found to be low in students attending offline classes in colleges than those taking online classes (MD = 5.180, df = 98, t =2.340, p > 0.05 level). The combined interactional effect of modes of education and academic stress on the states of the mental wellbeing of the students is found to be low (R2 = 0.053), whilst the combined impact of modes of education and mental wellbeing on the levels of academic stress was found to be quite low (R2 = 0.014). It was concluded that modes of education have an impact on levels of academic stress and states of the mental well-being of the students amidst the current pandemic, but it is low.Keywords: modes of education, online learning, offline learning, pandemic
Procedia PDF Downloads 1075597 Vocational Education for Sustainable Development: Teaching Methods and Practices
Authors: Seyilnan Hannah Wadak, Dangway Monica Clement
Abstract:
This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology
Procedia PDF Downloads 32