Search results for: automated monitoring system.
16723 Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation
Authors: Youtao Gao, Bingyu Jin, Tanran Zhao, Bo Xu
Abstract:
The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent.Keywords: extended Kalman filter, autonomous orbit determination, unscented Kalman filter, navigation constellation
Procedia PDF Downloads 28716722 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt
Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad
Abstract:
The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.Keywords: ecology, land resource, LULCC, management, metabolism, model, scenarios, system dynamics, urban development
Procedia PDF Downloads 38116721 Decision Support System for the Management and Maintenance of Sewer Networks
Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar
Abstract:
This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling
Procedia PDF Downloads 64216720 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures
Abstract:
The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.Keywords: stirring systems, entropy, reactive system, optimization
Procedia PDF Downloads 24616719 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network
Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar
Abstract:
Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE
Procedia PDF Downloads 36116718 A Retrospective Analysis of the Use of Vancomycin by Continous Infusion in the Critical Care Setting, Edinburgh
Authors: Sonia Nemakallu, Pota Kalima
Abstract:
Introduction: Vancomycin is a glycopeptide antibiotic, commonly used to treat gram-positive bacteraemia. It has been increasingly used in the critical care setting due to an increased awareness of resistant gram positive organisms. In Edinburgh both tertiary hospitals, The Western General Hospital and The Royal Infirmary Of Edinburgh, commonly use Vancomycin for a variety of infections. Administration of Vancomyicn in these hospitals is by continuous infusion as it is thought to maintain serum concentrations easier and is a simpler monitoring system. Purpose: The aim of the study was to evaluate the efficacy and reliability in which Vancomycin is used. Material and Methods: A retrospective study, over a 6-month period from January 2014 to June 2014. 91 admissions were included, all received Vancomycin by continuous infusion during their critical care stay. Results: The number one use for Vancomycin in critical care settings was in the treatment of ventilator or hospital-acquired pneumonia. Only 3% of population had MRSA. 49% of admissions were not therapeutic on day 1 post loading dose. Of those that were therapeutic on day 1 post loading dose, 39% of admissions showed no organisms in any cultures taken, 42% had organisms sensitive to Vancomycin and 19% had only organisms resistant to Vancomycin. Those that were not therapeutic on day 1 showed similar organism sensitivities. 15% of admissions had Vancomycin levels above 25 (levels should be maintained between 15-25). An increase in creatinine was proportionally seen with an increase in Vancomycin levels. Conclusion: Within Edinburgh Vancomycin is being overused in the critical care setting with only 3% of the population having highly resistant organisms. Continuous infusion have not ruled out the complexity of maintaining therapeutic levels, with a large proportion of patients not being therapeutic on day 1. Further research is also required into the nephrotoxic effects of using higher doses of Vancomycin.Keywords: Vancomycin, continuous infusion, multi resistant organisms, sepsis, renal toxicity
Procedia PDF Downloads 46416717 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 47916716 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System
Authors: Loreta Axhami
Abstract:
Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.Keywords: authoritarian pedagogic model, education system, ICT, media literacy
Procedia PDF Downloads 14416715 Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia
Authors: Fatemeh Keshavarz
Abstract:
Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia.Keywords: schizophrenia, microglia, autoantibodies, IL-32
Procedia PDF Downloads 12916714 A New Converter Topology for Wind Energy Conversion System
Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi
Abstract:
Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology
Procedia PDF Downloads 66316713 Android Graphics System: Study of Dual-Software VSync Synchronization Architecture and Optimization
Authors: Prafulla Kumar Choubey, Krishna Kishor Jha, S. B. Vaisakh Punnekkattu Chirayil
Abstract:
In Graphics-display subsystem, frame buffers are shared between producer i.e. content rendering and consumer i.e. display. If a common buffer is operated by both producer and consumer simultaneously, their processing rates mismatch can cause tearing effect in displayed content. Therefore, Android OS employs triple buffered system, taking in to account an additional composition stage. Three stages-rendering, composition and display refresh, operate synchronously on three different buffers, which is achieved by using vsync pulses. This synchronization, however, brings in to the pipeline an additional latency of up to 26ms. The present study details about the existing synchronization mechanism of android graphics-display pipeline and discusses a new adaptive architecture which reduces the wait time to 5ms-16ms in all the use-cases. The proposed method uses two adaptive software vsyncs (PLL) for achieving the same result.Keywords: Android graphics system, vertical synchronization, atrace, adaptive system
Procedia PDF Downloads 31616712 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 14116711 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov
Abstract:
The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis
Procedia PDF Downloads 15316710 Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages
Authors: Annie B. V., Anu A. G., Harikumar R.
Abstract:
Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies.Keywords: DC microgrid, hybrid energy storage system (HESS), power management, small signal modeling, supercapacitor
Procedia PDF Downloads 25416709 Context-Aware Recommender Systems Using User's Emotional State
Authors: Hoyeon Park, Kyoung-jae Kim
Abstract:
The product recommendation is a field of research that has received much attention in the recent information overload phenomenon. The proliferation of the mobile environment and social media cannot help but affect the results of the recommendation depending on how the factors of the user's situation are reflected in the recommendation process. Recently, research has been spreading attention to the context-aware recommender system which is to reflect user's contextual information in the recommendation process. However, until now, most of the context-aware recommender system researches have been limited in that they reflect the passive context of users. It is expected that the user will be able to express his/her contextual information through his/her active behavior and the importance of the context-aware recommender system reflecting this information can be increased. The purpose of this study is to propose a context-aware recommender system that can reflect the user's emotional state as an active context information to recommendation process. The context-aware recommender system is a recommender system that can make more sophisticated recommendations by utilizing the user's contextual information and has an advantage that the user's emotional factor can be considered as compared with the existing recommender systems. In this study, we propose a method to infer the user's emotional state, which is one of the user's context information, by using the user's facial expression data and to reflect it on the recommendation process. This study collects the facial expression data of a user who is looking at a specific product and the user's product preference score. Then, we classify the facial expression data into several categories according to the previous research and construct a model that can predict them. Next, the predicted results are applied to existing collaborative filtering with contextual information. As a result of the study, it was shown that the recommended results of the context-aware recommender system including facial expression information show improved results in terms of recommendation performance. Based on the results of this study, it is expected that future research will be conducted on recommender system reflecting various contextual information.Keywords: context-aware, emotional state, recommender systems, business analytics
Procedia PDF Downloads 23316708 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology
Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji
Abstract:
Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric
Procedia PDF Downloads 7416707 The Determination of Operating Reserve in Small Power Systems Based on Reliability Criteria
Authors: H. Falsafi Falsafizadeh, R. Zeinali Zeinali
Abstract:
This paper focuses on determination of total Operating Reserve (OR) level, consisting of spinning and non-spinning reserves, in two small real power systems, in such a way that the system reliability indicator would comply with typical industry standards. For this purpose, the standard used by the North American Electric Reliability Corporation (NERC) – i.e., 1 day outage in 10 years or 0.1 days/year is relied. The simulation of system operation for these systems that was used for the determination of total operating reserve level was performed by industry standard production simulation software in this field, named PLEXOS. In this paper, the operating reserve which meets an annual Loss of Load Expectation (LOLE) of approximately 0.1 days per year is determined in the study year. This reserve is the minimum amount of reserve required in a power system and generally defined as a percentage of the annual peak.Keywords: frequency control, LOLE, operating reserve, system reliability
Procedia PDF Downloads 34616706 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 14916705 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System
Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga
Abstract:
This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller, and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.Keywords: critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems
Procedia PDF Downloads 49016704 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 11516703 The Role of Food System in Promoting Environmental Planning
Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar
Abstract:
Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as food security, poverty and environmental problems. In fact, urban agriculture plays an important role in food system, which can provide citizens' income and become one of the components of economic, social and environmental systems. The purpose of this paper is to analyze the urban agriculture and urban food systems in order to understand the impact of urban foods production on environmental planning in non-western city region context. To achieve such objective, we carry out a case study in Mashhad city of Iran by using qualitative approaches. A survey on documentary studies and planning tools integrate with face to face interview with experts which explain the role of food system in environmental planning process. The paper extends the use of food in the environmental planning, specifically to examine this role to create agricultural garden as a mean to improve agricultural system in non-western country. The paper is concluded with a set of recommendations for researchers and policymakers who seek to create spaces in order to implement urban agriculture in cities for food justice.Keywords: urban agriculture , agricultural park, city region food system, Mashhad
Procedia PDF Downloads 13016702 Research on Building Urban Sustainability along the Coastal Area in China
Authors: Sun Jiaojiao, Fu Jiayan
Abstract:
At present, in China, the research about the urban sustainability construction is still in the exploratory stage. The ecological problems of the coastal area are more sensitive and complicated. In the background of global warming with serious ecological damage, this paper deeply researches on the main characteristics of urban sustainability and measures how to build urban sustainability. Through combination with regional environmental and economic ability along the coastal area, we put forward the system planning framework, construction strategy and the evaluation index system in order to seek the way of building urban sustainability along coastal area in China.Keywords: urban sustainability, coastal areas, construction strategy, evaluation index system
Procedia PDF Downloads 60516701 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction project. Case-based reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the relational case-based reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then, feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.Keywords: relational cased-based reasoning, case-based reasoning, project delivery system, PDS selection
Procedia PDF Downloads 43216700 Invasion of Scaevola sericea (Goodeniaceae) in Cuba: Invasive Dynamic and Density-Dependent Relationship with the Native Species Tournefortia gnaphalodes (Boraginaceae)
Authors: Jorge Ferro-Diaz, Lazaro Marquez-Llauger, Jose Alberto Camejo-Lamas, Lazaro Marquez-Govea
Abstract:
The invasion of Scaevola sericea Vahl (Goodeniaceae) in Cuba is a recent process, this exotic invasive species was reported for the first time, in the national territory, by 2008. S. sericea is native to the coasts around the Indian Ocean and western Pacific, common on sandy beaches; it has expanded rapidly around the planet by either natural or anthropic causes, mainly due to its use in hotel gardening. Cuba is highly vulnerable to the colonization of these species, mainly due to tropical hurricanes which have increased in the last decades; it also affects other native species such as Tournefortia gnaphalodes (L.) R. Br. (Boraginaceae) that show invasive manifestations because of the unbalanced state of demographic processes of littoral vegetation, which has been studied by authors during the last 10 years. The fast development of Cuban tourism has encouraged the use of exotic species in gardening that invade large sectors of sandy coasts. Taking into account the importance of assessing the impacts dimensions and adopting effective control measures, a monitoring program for the invasion of S. sericea in Cuba was undertaken. The program has been implemented since 2013 and the main objective was to identify invasive patterns and interactions with other native species of coastal vegetation. This experience also aimed to validate the design and propose a standardized monitoring protocol to be applied throughout the country. In the Cuban territory, 12 sites were chosen, where there were established 24 permanent plots of 100 m2; measurements were taken twice a year taking into consideration variables such as abundance, plant height, soil cover, flora and companion vegetation, density and frequency; other physical variables of the beaches were also measured. Similarly, for associated individuals of T. gnaphalodes, the same variables were measured. The results of these first four years allowed us to document patterns of S. sericea invasion, highlighting the use of adventitious roots to enhance their colonization, and to characterize demographic indicators, ecosystem affections, and interactions with native plants. A density-dependent relationship with T. gnaphalodes was documented, finding a controlling effect on S. sericea, so that a manipulation experiment was applied to evaluate possible management actions to be incorporated in the Plans of the protected areas involved. With these results, it was concluded, for the evaluated sites, that S. sericea has had an invasion dynamics ruled by effects of coastal dynamics, more intense in beaches with affectations to the native vegetation, and more controlled in beaches with more preserved vegetation. It was found that when S. sericea is established, the mechanism that most reinforces its invasion is the use of adventitious roots, used to expand the patches and colonize beach sectors. It was also found that when the density of T. gnaphalodes increases, it detains the expansion of S. sericea and reduces its colonization possibilities, behaving as a natural controller of its biological invasion. The results include a proposal of a new Monitoring Protocol for Scaevola sericea in Cuba, with the possibility of extending its implementation to other countries in the region.Keywords: biological invasion, exotic invasive species, plant interactions, Scaevola sericea
Procedia PDF Downloads 22916699 Analysis of the Performance of a Solar Water Heating System with Flat Collector
Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.
Abstract:
The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.Keywords: recycling materials, energy efficiency, solar collector, solar water heating system
Procedia PDF Downloads 59916698 Public Policy Making Process in Developing Countries: Case Study of Turkish Health System
Authors: Hakan Akin
Abstract:
The aim of this study was to examine the policy making process in Turkish Health System. This policy making process will be examined through public policy change theories. Since political actors played in the formulation of public policies also explains the type of policy change, this actors will be inspected in the supranational and national basis. Also the transformation of public policy in the Turkish health care system will be analysed under the concepts of New right ideology, neo-liberalism, neo-conservatism and governance. And after this analyse, the outputs and outcomes of this transformation will be discussed in the context of developing countries.Keywords: policy transfer, policy diffusion, policy convergence, new right, governance
Procedia PDF Downloads 48116697 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection
Authors: Cherifi Abdelhamid
Abstract:
In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)
Procedia PDF Downloads 65316696 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems
Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo
Abstract:
Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation
Procedia PDF Downloads 9516695 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 29916694 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 221