Search results for: artificial intelligence in semiconductor manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4911

Search results for: artificial intelligence in semiconductor manufacturing

1551 Study on Disaster Prevention Plan for an Electronic Industry in Thailand

Authors: S. Pullteap, M. Pathomsuriyaporn

Abstract:

In this article, a study of employee’s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous.

Keywords: flood prevention plan, flood event, electronic industrial plant, disaster, risk management

Procedia PDF Downloads 326
1550 Assessing Efficiency Trends in the Indian Sugar Industry

Authors: S. P. Singh

Abstract:

This paper measures technical and scale efficiencies of 40 Indian sugar companies for the period from 2004-05 to 2013-14. The efficiencies are estimated through input-oriented DEA models using one output variable—value of output (VOP) and five input variables—capital cost (CA), employee cost (EMP), raw material (RW), energy & fuel (E&F) and other manufacturing expenses (OME). The sugar companies are classified into integrated and non-integrated categories to know which one achieves higher level of efficiency. Sources of inefficiency in the industry are identified through decomposing the overall technical efficiency (TE) into pure technical efficiency (PTE) and scale efficiency (SE). The paper also estimates input-reduction targets for relatively inefficient companies and suggests measures to improve their efficiency level. The findings reveal that the TE does not evince any trend rather it shows fluctuations across years, largely due to erratic and cyclical pattern of sugar production. Further, technical inefficiency in the industry seems to be driven more by the managerial inefficiency than the scale inefficiency, which implies that TE can be improved through better conversion of inputs into output.

Keywords: DEA, slacks, sugar industry, technical efficiency

Procedia PDF Downloads 318
1549 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
1548 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products

Authors: Alaa Abdellatif, Gabrièle Breda

Abstract:

Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patients

Keywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation

Procedia PDF Downloads 76
1547 Proposal for Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair

Authors: Adetoba B. Tiwalola, Adedeji W. Oyediran, Yekini N. Asafe, Akinwole A. Kikelomo

Abstract:

Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for knowledge sharing among automobile users.

Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community

Procedia PDF Downloads 440
1546 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology

Authors: Tobias Beyer, Christoph Friedrich

Abstract:

Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.

Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis

Procedia PDF Downloads 108
1545 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 233
1544 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 175
1543 Manufacturing of Nano Zeolite by Planetary Ball Mill and Investigation of the Effects on Concrete

Authors: Kourosh Kosari

Abstract:

This study is engineering the properties of concrete containing natural nano zeolite as supplementary cementitious material in the blended Portland-cement based binder in amounts of 5,7 and 10% by mass. Crashing of clinoptilolite zeolite is performed by means of planetary ball mill. Two types of concrete along with water to cementitious material ratio (W/(C + P)) in 0.45 and 0.4 at the ages of 7, 28 and 90 days and were compared with each other. The effect of these additives on mechanical properties (compressive and tensile strength) and durability has been investigated by Electrical Resistivity (ER) and Rapid Chloride Penetration Test (RCPT) at the ages 28 and 90 days. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) revealed that nanoparticles of natural clinoptilolite could improve quality of concrete. As a result of the tests, decrease in penetration of chloride ion and increase electrical resistivity significantly that are appropriate option for controlling of corrosion in reinforced concrete structures but increase of mechanical characteristics is not considerable.

Keywords: ball mill, durability, mechanical properties, nano zeolite

Procedia PDF Downloads 320
1542 Smart Production Planning: The Case of Aluminium Foundry

Authors: Samira Alvandi

Abstract:

In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.

Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries

Procedia PDF Downloads 76
1541 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 268
1540 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg

Authors: Philip Rose, Markus Linke, David Busquets

Abstract:

The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.

Keywords: ENF, fracture toughness, interlaminar, mode II

Procedia PDF Downloads 136
1539 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 73
1538 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
1537 Standard and Processing of Photodegradable Polyethylene

Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz

Abstract:

The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.

Keywords: photodegradable polyethylene, plasticulture, processing schemes

Procedia PDF Downloads 518
1536 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
1535 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 210
1534 Development of Ceramic Spheres Buoyancy Modules for Deep-Sea Oil Exploration

Authors: G. Blugan, B. Jiang, J. Thornberry, P. Sturzenegger, U. Gonzenbach, M. Misson, D. Cartlidge, R. Stenerud, J. Kuebler

Abstract:

Low-cost ceramic spheres were developed and manufactured from the engineering ceramic aluminium oxide. Hollow spheres of 50 mm diameter with a wall thickness of 0.5-1.0 mm were produced via an adapted slip casting technique. It was possible to produce the spheres with good repeatability and with no defects or failures in the spheres due to the manufacturing process. The spheres were developed specifically for use in buoyancy devices for deep-sea exploration conditions at depths of 3000 m below sea level. The spheres with a 1.0 mm wall thickness exhibit a buoyancy of over 54% while the spheres with a 0.5 mm wall thickness exhibit a buoyancy of over 73%. The mechanical performance of the spheres was confirmed by performing a hydraulic burst pressure test on individual spheres. With a safety factor of 3, all spheres with 1.0 mm wall thickness survived a hydraulic pressure of greater than 150 MPa which is equivalent to a depth of more than 5000 m below sea level. The spheres were then incorporated into a buoyancy module. These hollow aluminium oxide ceramic spheres offer an excellent possibility of deep-sea exploration to depths greater than the currently used technology.

Keywords: buoyancy, ceramic spheres, deep-sea, oil exploration

Procedia PDF Downloads 415
1533 Optimization of High Flux Density Design for Permanent Magnet Motor

Authors: Dong-Woo Kang

Abstract:

This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations.

Keywords: demagnetization, design optimization, magnetic analysis, permanent magnet motors

Procedia PDF Downloads 377
1532 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 246
1531 Revolution Biopolibag System Based on Water Hyacinth's Fiber as a Solution for Environmental Friendly Seeding and Seedling

Authors: Supriady R. P. Siregar, Rizki Barkah Aulia, Dhiya Fadilla Dewi

Abstract:

Polybag is a plastic that is used to seed plants. The common type that used for polybag is a synthetic that made from petroleum such as polyethylene. Beside the character of the raw material that are non-renewable and limited, synthetic polybag ability to disintegrate in the environment is very low. According to that situation, we need a solution to overcome these problems by creating an environmentally friendly polybag. In this research, using the water hyacinth plant fibers (Eichornia crassipes) as a major component in manufacturing the environmentally friendly polybag, the water hyacinth (Eichornia crassipes) contains approximately 60% cellulose. The research method used is an experiment by testing the mechanical characters and biodegradability bio-polybag water hyacinth fibers (Eichornia crassipes) on three medium that is dissolved in water, river water and buried in soil. The research shows bio-polybag of hyacinth fibers can rapidly degraded. This study is expected to be the beginning of the creation bio-polybag of water hyacinth fiber (Eichornia crassipes) and can be applied in agriculture.

Keywords: revolution, biopolybag, renewable, environment

Procedia PDF Downloads 240
1530 Manufacturing of Twist-Free Surfaces by Magnetism Aided Machining Technologies

Authors: Zs. Kovács, Zs. J. Viharos, J. Kodácsy

Abstract:

As a well-known conventional finishing process, the grinding is commonly used to manufacture seal mating surfaces and bearing surfaces, but is also creates twisted surfaces. The machined surfaces by turning or grinding usually have twist structure on the surfaces, which can convey lubricants such as conveyor screw. To avoid this phenomenon, have to use special techniques or machines, for example start-stop turning, tangential turning, ultrasonic protection or special toll geometries. All of these solutions have high cost and difficult usability. In this paper, we describe a system and summarize the results of the experimental research carried out mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Roller Burnishing (MRB). These technologies are simple and also green while able to produce twist-free surfaces. During the tests, C45 normalized steel was used as workpiece material which was machined by simple and Wiper geometrical turning inserts in a CNC turning lathe. After the turning, the MAP and MRB technologies can be used directly to reduce the twist of surfaces. The evaluation was completed by advanced measuring and IT equipment.

Keywords: magnetism, finishing, polishing, roller burnishing, twist-free

Procedia PDF Downloads 576
1529 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition

Authors: Edward Sarich, Jack Ryan

Abstract:

In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.

Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation

Procedia PDF Downloads 149
1528 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 151
1527 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 450
1526 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 281
1525 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos

Abstract:

The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR

Procedia PDF Downloads 544
1524 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 517
1523 The Management of Behcet's Disease Patient's Mandibular Total Edentulism with Custom Made Implant Supported Bar Retainer: A Case Report

Authors: Faruk Emir, Simel Ayyıldız, Cem Şahin

Abstract:

Behçet’s disease or Behçet’s syndrome is a chronic and multi-systemic inflammatory disease of unknown cause. This syndrome often presents with mucous membrane ulceration and ocular problems. As a systemic disease Behcet includes triple-symptom complex of recurrent oral aphthous ulcers, genital ulcers, and uveitis. Nearly all patients present with some form of painful oral mucocutaneous ulcerations in the form of aphthous ulcers. The aim of the treatment plan for Behçet’s Disease patients is to eliminate oral problems and increase the patient comfort.This clinical report represents the prosthodontic rehabilitation of Behcet’s disease patients mandibular total edentulism with the use of implant supported prosthesis that planned on custom abutments and bar retainers via CAD/CAM technology and patient satisfaction has been achieved in function and aesthetics.

Keywords: Behçet’s disease, CAD/CAM, custom-made manufacturing, titanium milled bar retainer

Procedia PDF Downloads 334
1522 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS

Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: brand, cosmetic product, ANFIS, DEMATEL

Procedia PDF Downloads 417