Search results for: artificial air storage reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: artificial air storage reservoir

1253 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 339
1252 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 42
1251 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 55
1250 Secondary Compression Behavior of Organic Soils in One-Dimensional Consolidation Tests

Authors: Rinku Varghese, S. Chandrakaran, K. Rangaswamy

Abstract:

The standard one-dimensional consolidation test is used to find the consolidation behaviour of artificially consolidated organic soils. Incremental loading tests were conducted on the clay without and with organic matter. The study was conducted with soil having different organic content keeping all other parameters constant. The tests were conducted on clay and artificially prepared organic soil sample at different vertical pressure. The load increment ratio considered for the test is equal to one. Artificial organic soils are used for the test by adding starch to the clay. The percentage of organic content in starch is determined by adding 5% by weight starch into the clay (inorganic soil) sample and corresponding change in organic content of soil was determined. This was expressed as percentage by weight of starch, and it was found that about 95% organic content in the soil sample. Accordingly percentage of organic content fixed and added to the sample for testing to understand the consolidation behaviour clayey soils with organic content. A detailed study of the results obtained from IL test was investigated. The main items investigated were (i) coefficient of consolidation (cv), (ii) coefficient of volume compression (mv), (iii) coefficient of permeability (k). The consolidation parameter obtained from IL test was used for determining the creep strain and creep parameter and also predicting their variation with vertical stress and organic content.

Keywords: consolidation, secondary compression, creep, starch

Procedia PDF Downloads 281
1249 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision

Authors: Arth Bohra, Marwa Mahmoud

Abstract:

In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.

Keywords: soccer, corner kicks, AI, computer vision

Procedia PDF Downloads 174
1248 Smart Growth Through Innovation Programs: Challenges and Opportunities

Authors: Hanadi Mubarak Al-Mubaraki, Michael Busler

Abstract:

Innovation is the powerful tools for economic growth and diversification, which lead to smart growth. The objective of this paper is to identify the opportunities and challenges of innovation programs discuss and analyse the implementation of the innovation program in the United States (US) and United Kingdom (UK). To achieve the objectives, the research used a mixed methods approach, quantitative (survey), and qualitative (multi-case study) to examine innovation best practices in developed countries. In addition, the selection of 4 interview case studies of innovation organisations based on the best practices and successful implementation worldwide. The research findings indicated the two challenges such as 1) innovation required business ecosystem support to deliver innovation outcomes such as new product and new services, and 2) foster the climate of innovation &entrepreneurship for economic growth and diversification. Although the two opportunities such as 1) sustainability of the innovation events which lead smart growth, and 2) establish the for fostering the artificial intelligence hub entrepreneurship networking at multi-levels. The research adds value to academicians and practitioners such as government, funded organizations, institutions, and policymakers. The authors aim to conduct future research a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The Originality of This study contributes to current literature about the innovation best practice in developed and developing countries.

Keywords: economic development, technology transfer, entrepreneurship, innovation program

Procedia PDF Downloads 145
1247 A Drop of Water for the Thirsty Ground: Implementing Drip-Irrigation System as an Alternative to the Existing System to Promote Sustainable Livelihoods in the Archipelagic Dryland East Nusa Tenggara, Indonesia

Authors: F. L. Benu, I. W. Mudita, R. L. Natonis

Abstract:

East Nusa Tenggara, together with part of East Java, West Nusa Tenggara, and Maluku, has been included as part of global drylands defined according to the ratio of annual precipitation (P) and annual potential evaporation (PET) and major vegetation types of grassland and savannah ecosystems. These tropical drylands are unique because, whereas drylands in other countries are mostly continental, here they are archipelagic. These archipelagic drylands are also unique in terms of being included because of more on their major vegetation types than of their P/PET ratio. Slash-and-burn cultivation and free roaming animal husbandry are two major livelihoods being widely practiced, along with alternative seasonal livelihood such as traditional fishing. Such livelihoods are vulnerable in various respects, especially because of drought, which becomes more unpredictable in the face of climate changes. To cope with such vulnerability, semi-intensive farming using drip irrigation is implemented as an appropriate technology with the goal of promoting a more sustainable alternative to the existing livelihoods. The implementation was started in 2016 with a pilot system at the university field laboratory in Kupang in which various designs of installation were tested. The modified system consisting of an uplifted water reservoir and solar-powered pump was tested in Papela, the District of Rote-Ndao, in 2017 to convince fishermen who had been involved in illegal fishing in Australia-Indonesia transboundary waters, to adopt small-scale farming as a more sustainable alternative to their existing livelihoods. The system was again tested in a larger coverage in Oesena, the District of Kupang, in 2018 to convince slash-and-burn cultivators to adopt an environmentally friendlier cultivation system. From the implementation of the modified system in both sites, the participating fishermen in Papela were able to manage the system under tight water supply to grow chili pepper, tomatoes, and watermelon and the slash-and-burn cultivators in Oesena to grow chili pepper in a more efficient water use than water use in a conventional irrigation system. The gross margin obtained from growing chili pepper, tomatoes, and watermelon in Papela and from growing chili pepper in Oesena showed that small-scale farming using drip irrigation system was a promising alternative to local people in generating cash income to support their livelihoods. However, before promoting this appropriate technology as a more sustainable alternative to the existing livelihoods elsewhere in the region, better understanding on social-related contexts of the implementation is needed.

Keywords: archipelagic drylands, drip irrigation system, East Nusa Tenggara, sustainable livelihoods

Procedia PDF Downloads 115
1246 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry

Authors: Basem Kamal Abasakhiroun Farag

Abstract:

Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.

Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.

Procedia PDF Downloads 67
1245 In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl

Authors: Iram Siddique

Abstract:

Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions.

Keywords: biochemical studies, nodal segments, rooting, synthetic seeds, thidiazuron

Procedia PDF Downloads 360
1244 Friendship Love Orientation as Predictor of Attachment Style: A Gender Perspective

Authors: Maria Sana Amin, Anum Atiq, Haya Fatimah

Abstract:

Secure attachment in childhood creates a healthy love attitude in the adulthood. Child secure attachment develops a positive relation attitude in their adulthood, similarly, anxiety-avoidant attachment develops negative attitude toward relations. The aim of this paper is twofold: 1) We investigate the relationship between Friendship Attitude and Attachment Styles; and 2) explore the impact of gender on Love Attitudes and Attachment styles. Data was collected by convincing sampling among the students of University of Management and Technology age group 18- 25. The sample consists 60 young adults (Male=36, Female =54). The Love Attitudes Scales subscale Storage was used to measure attitudes towards friendship love and The Experiences in Close Relationships-Revised questionnaire was used to measure Adult Attachment Style. The result of Independent T-Test analysis shows that there was no significant difference in anxiety for female and male conditions; t (58) =-.768, p=.446 and avoidance for female and male conditions; t (58) =1.63, p=.108. Moreover, also there was no significant difference in friendship love for female (M=27.37, SD=6.371) and male (M=26.08, SD=5.709) conditions; t (58) =-.820, p=.416. Pearson correlation analysis shows significantly negative correlation between love attitude-friendship and attachment style- avoidance, (r=-.433, p=.008) among male and love attitude-friendship and attachment style- avoidance (r=-.438, p=.032) among female. There are no gender differences in attachment styles i.e. anxiety, avoidance and their relationship with friendship love attitude. People have avoidant attachment find it hard to fall in love and develop intimacy, and they tend to search for independence.

Keywords: avoidance attachment style, anxiety attachment style, friendship love attitude, gender difference/similarity

Procedia PDF Downloads 309
1243 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)

Authors: Abdul Mannan Akhtar

Abstract:

In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.

Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection

Procedia PDF Downloads 464
1242 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 39
1241 CFD Simulation for Thermo-Hydraulic Performance V-Shaped Discrete Ribs on the Absorber Plate of Solar Air Heater

Authors: J. L. Bhagoria, Ajeet Kumar Giri

Abstract:

A computational investigation of various flow characteristics with artificial roughness in the form of V-types discrete ribs, heated wall of rectangular duct for turbulent flow with Reynolds number range (3800-15000) and p/e (5 to 12) has been carried out with k-e turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in literature. The current study evaluates thermal performance behavior, heat transfer and fluid flow behavior in a v shaped duct with discrete roughened ribs mounted on one of the principal wall (solar plate) by computational fluid dynamics software (Fluent 6.3.26 Solver). In this study, CFD has been carried out through designing 3-demensional model of experimental solar air heater model analysis has been used to perform a numerical simulation to enhance turbulent heat transfer and Reynolds-Averaged Navier–Stokes analysis is used as a numerical technique and the k-epsilon model with near-wall treatment as a turbulent model. The thermal efficiency enhancement because of selected roughness is found to be 16-24%. The result predicts a significant enhancement of heat transfer as compared to that of for a smooth surface with different P’ and various range of Reynolds number.

Keywords: CFD, solar collector, airheater, thermal efficiency

Procedia PDF Downloads 290
1240 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru

Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama

Abstract:

There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.

Keywords: water economy, simulation, modeling, integration

Procedia PDF Downloads 155
1239 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics

Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari

Abstract:

The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.

Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration

Procedia PDF Downloads 64
1238 Key Performance Indicators of Cold Supply Chain Practices in Agriculture Sector: Empirical Study on the Egyptian Export Companies

Authors: Ahmed Barakat, Nourhan Ahmed Saad, Mahmoud Hammad

Abstract:

Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.

Keywords: agriculture sector, cold chain management, export companies, non-traded goods, supply chain management

Procedia PDF Downloads 162
1237 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method

Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption

Procedia PDF Downloads 518
1236 An Historical Revision of Change and Configuration Management Process

Authors: Expedito Pinto De Paula Junior

Abstract:

Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product.

Keywords: changes, configuration management, historical, revision

Procedia PDF Downloads 201
1235 Evaluation of Raw Diatomaceous Earth and Plant Powders in the Control of Callosobruchus subinnotatus (Pic.) on Stored Bambara Groundnut (Vigna subterranea (L.) (Verdc.) Seeds

Authors: Ibrahim Nasiru Dole, Audu Abdullahi, Dike Michiel Chidozie, Lawal Mansur

Abstract:

Bambara groundnut is an important grain legume and the seeds in storage suffer infestation by Callosobruchus subinnotatus. Laboratory study was conducted to evaluate the efficacy of raw diatomaceous earth (RDE) and plant powders (Jatropha curcas (L.), Eucalyptus camaldulensis (Dehnh.) and Melia azedarach (L.) against C. subinnotatus infesting stored bambara groundnut seeds. Rearing of the insects and the experiments were conducted in Agricultural Biology Laboratory of the Usmanu Danfodiyo University, Sokoto - Nigeria under ambient conditions (29-33oC and a relative humidity of 44-56%). Four treatments at three levels: RDE at 0.5, 1.0 and 1.5 g while plant powders at 0.5, 1.0 and 2.0 g, standard/check (2.0 g of Actellic dust), and a control. These were separately admixed with 100 g of sterilized seeds in glass jars. Each jar was later infested with thirty, 1-2-days old C. subinnotatus of mixed sexes. Adult mortality was assessed 24, 48, 72 and 96 hours, F1 and F2 progenies, seed damage, weight loss and viability were also assessed after 90 days. Eighty-nine (89%) percent adult mortality was recorded in the highest dose of RDE after 96 hours of exposure. These treatments significantly (P < 0.05) suppressed F1 and F2 progenies emergence in relation to the control. The control suffered significantly (P < 0.05) higher seed damage (51.0 %) and weight loss (40.8%) thereby recording lower seed germination. Therefore, RDE and plant powders could be used against C. subinnotatus on stored bambara groundnut seeds.

Keywords: bambara, callosobruchus subinnotatus, plant powders, raw diatomaceous earth,

Procedia PDF Downloads 426
1234 Digital Innovation and Business Transformation

Authors: Bisola Stella Sonde

Abstract:

Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.

Keywords: business transformation, digital innovation, emerging technologies, organizational structures

Procedia PDF Downloads 60
1233 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule

Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang

Abstract:

This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.

Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm

Procedia PDF Downloads 87
1232 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
1231 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates

Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.

Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon

Procedia PDF Downloads 239
1230 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 185
1229 Value-Added Products from Recycling of Solid Waste in Steel Plants

Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu

Abstract:

Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.

Keywords: calcium ferrite, flux, slag formation, solid waste

Procedia PDF Downloads 215
1228 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
1227 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations

Authors: I. S. R. Butswat, D. Zahraddeen

Abstract:

This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.

Keywords: animal, agriculture, entreprenurship, wealth

Procedia PDF Downloads 247
1226 Using Environmental Life Cycle Assessment to Design Sustainable Packaging

Authors: Timothy Francis Grant

Abstract:

There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency.

Keywords: Climate change, Life Cycle Assessment, Marine litter, Packaging sustainability

Procedia PDF Downloads 133
1225 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 148
1224 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 185