Search results for: green infrastructure network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8397

Search results for: green infrastructure network

5097 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 193
5096 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 175
5095 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 263
5094 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 112
5093 Analysis of Financial Performance Measurement and Financial Distress Assessment of Highway Companies Listed on Indonesia Stock Exchange before and during COVID-19 Pandemic

Authors: Ari Prasetyo, Taufik Faturohman

Abstract:

The COVID-19 pandemic in Indonesia is part of the ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was confirmed to have spread to Indonesia on 2 March 2020. Moreover, the government of Indonesia has been conducting a local lockdown to limit people's movement from one city to another city. Therefore, this situation has impact on business operation, especially on highway companies listed on the Indonesia stock exchange. This study evaluates and measures three companies’ financial performance and health conditions before and during the COVID-19 pandemic from 2016 – 2020. The measurement is conducted by using financial ratio analysis and the Altman Z-score method. The ratio used to measure the financial ratio analysis is taken from the decree of the Ministry of SOE’s KEP-100/MBU/2002 about the company’s health level condition. From the decree, there are eight financial ratios used such as return on equity (ROE), return on investment (ROI), current ratio, cash ratio, collection period, inventory turnover, total asset turnover, and total equity to total asset. Altman Z-score is used to calculate the financial distress condition. The result shows that the highway companies for the period 2016 – 2020 are as follows: PT Jasa Marga (Persero) Tbk (AA, BB, BB, BB, C), PT Citra Marga Nusaphala Persada Tbk (BB, AA, BB, BBB, C), and PT Nusantara Infrastructure Tbk (BB, BB, AA, BBB, C). In addition, the Altman Z-score assessment performed in 2016-2020 shows that PT Jasa Marga (Persero) Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020. PT Citra Marga Nusaphala Persada Tbk was in the grey zone area for 2015-2019 and in the distress zone for 2020. PT Nusantara Infrastructure Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020.

Keywords: financial performance, financial ratio, Altman Z-score, financial distress, highway company

Procedia PDF Downloads 196
5092 Rapid Strategic Consensus Building in Land Readjustment in Kabul

Authors: Nangialai Yousufzai, Eysosiyas Etana, Ikuo Sugiyama

Abstract:

Kabul population has been growing continually since 2001 and reaching six million in 2025 due to the rapid inflow from the neighboring countries. As a result of the population growth, lack of living facilities supported by infrastructure services is becoming serious in social and economic aspects. However, about 70% of the city is still occupied illegally and the government has little information on the infrastructure demands. To improve this situation, land readjustment is one of the powerful development tools, because land readjustment does not need a high governmental budget of itself. Instead, the method needs cooperation between stakeholders such as landowners, developers and a local government. So it is becoming crucial for both government and citizens to implement land readjustment for providing tidy urban areas with enough public services to realize more livable city as a whole. On the contrary, the traditional land readjustment tends to spend a long time until now to get consensus on the new plan between stakeholders. One of the reasons is that individual land area (land parcel) is decreased due to the contribution to public such as roads/parks/squares for improving the urban environment. The second reason is that the new plan is difficult for dwellers to imagine new life after the readjustment. Because the paper-based plan is made by an authority not for dwellers but for specialists to precede the project. This paper aims to shorten the time to realize quick consensus between stakeholders. The first improvement is utilizing questionnaire(s) to assess the demand and preference of the landowners. The second one is utilizing 3D model for dwellers to visualize the new environment easily after the readjustment. In additions, the 3D model is reflecting the demand and preference of the resident so that they could select a land parcel according to their sense value of life. The above-mentioned two improvements are carried out after evaluating total land prices of the new plans to select for maximizing the project value. The land price forecasting formula is derived from the current market ones in Kabul. Finally, it is stressed that the rapid consensus-building of land readjustment utilizing ICT and open data analysis is essential to redevelop slums and illegal occupied areas in Kabul.

Keywords: land readjustment, consensus building, land price formula, 3D simulation

Procedia PDF Downloads 337
5091 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 73
5090 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 644
5089 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 348
5088 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 83
5087 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 124
5086 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)

Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.

Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone

Procedia PDF Downloads 370
5085 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 38
5084 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: LTE, MIMO, path loss, UAV

Procedia PDF Downloads 281
5083 The Evolution of National Technological Capability Roles From the Perspective of Researcher’s Transfer: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

Technology capability refers to the comprehensive ability that influences all factors of technological development. Among them, researchers’ resources serve as the foundation and driving force for technology capability, representing a significant manifestation of a country/region's technological capability. Therefore, the cross-border transfer behavior of researchers to some extent reflects changes in technological capability between countries/regions, providing a unique research perspective for technological capability assessment. This paper proposes a technological capability assessment model based on personnel transfer networks, which consists of a researchers' transfer network model and a country/region role evolution model. It evaluates the changes in a country/region's technological capability roles from the perspective of researcher transfers and conducts an analysis using artificial intelligence as a case study based on literature data. The study reveals that the United States, China, and the European Union are core nodes, and identifies the role evolution characteristics of several major countries/regions.

Keywords: transfer network, technological capability assessment, central-peripheral structure, role evolution

Procedia PDF Downloads 99
5082 Accounting and Prudential Standards of Banks and Insurance Companies in EU: What Stakes for Long Term Investment?

Authors: Sandra Rigot, Samira Demaria, Frederic Lemaire

Abstract:

The starting point of this research is the contemporary capitalist paradox: there is a real scarcity of long term investment despite the boom of potential long term investors. This gap represents a major challenge: there are important needs for long term financing in developed and emerging countries in strategic sectors such as energy, transport infrastructure, information and communication networks. Moreover, the recent financial and sovereign debt crises, which have respectively reduced the ability of financial banking intermediaries and governments to provide long term financing, questions the identity of the actors able to provide long term financing, their methods of financing and the most appropriate forms of intermediation. The issue of long term financing is deemed to be very important by the EU Commission, as it issued a 2013 Green Paper (GP) on long-term financing of the EU economy. Among other topics, the paper discusses the impact of the recent regulatory reforms on long-term investment, both in terms of accounting (in particular fair value) and prudential standards for banks. For banks, prudential and accounting standards are also crucial. Fair value is indeed well adapted to the trading book in a short term view, but this method hardly suits for a medium and long term portfolio. Banks’ ability to finance the economy and long term projects depends on their ability to distribute credit and the way credit is valued (fair value or amortised cost) leads to different banking strategies. Furthermore, in the banking industry, accounting standards are directly connected to the prudential standards, as the regulatory requirements of Basel III use accounting figures with prudential filter to define the needs for capital and to compute regulatory ratios. The objective of these regulatory requirements is to prevent insolvency and financial instability. In the same time, they can represent regulatory constraints to long term investing. The balance between financial stability and the need to stimulate long term financing is a key question raised by the EU GP. Does fair value accounting contributes to short-termism in the investment behaviour? Should prudential rules be “appropriately calibrated” and “progressively implemented” not to prevent banks from providing long-term financing? These issues raised by the EU GP lead us to question to what extent the main regulatory requirements incite or constrain banks to finance long term projects. To that purpose, we study the 292 responses received by the EU Commission during the public consultation. We analyze these contributions focusing on particular questions related to fair value accounting and prudential norms. We conduct a two stage content analysis of the responses. First, we proceed to a qualitative coding to identify arguments of respondents and subsequently we run a quantitative coding in order to conduct statistical analyses. This paper provides a better understanding of the position that a large panel of European stakeholders have on these issues. Moreover, it adds to the debate on fair value accounting and its effects on prudential requirements for banks. This analysis allows us to identify some short term bias in banking regulation.

Keywords: basel 3, fair value, securitization, long term investment, banks, insurers

Procedia PDF Downloads 295
5081 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 361
5080 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 114
5079 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 310
5078 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development

Authors: Dyah Titisari Widyastuti

Abstract:

Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.

Keywords: accessibility of daily mobility, pedestrian-friendly district, rail-station district, transit oriented development

Procedia PDF Downloads 238
5077 The Application of Dynamic Network Process to Environment Planning Support Systems

Authors: Wann-Ming Wey

Abstract:

In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)

Procedia PDF Downloads 350
5076 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 265
5075 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 158
5074 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks

Procedia PDF Downloads 397
5073 Microplastics in Urban Environment – Coimbra City Case Study

Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen

Abstract:

Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.

Keywords: microplastics, cities, sources, pathways, vegetation

Procedia PDF Downloads 64
5072 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 159
5071 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 140
5070 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 136
5069 Via ad Reducendam Intensitatem Energiae Industrialis in Provincia Sino ad Conservationem Energiae

Authors: John Doe

Abstract:

This paper presents the research project “Escape Through Culture”, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020 and the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The project implementation is assumed by three partners, (1) the Computer Technology Institute and Press "Diophantus" (CTI), experienced with the design and implementation of serious games, natural language processing and ICT in education, (2) the Laboratory of Environmental Communication and Audiovisual Documentation (LECAD), part of the University of Thessaly, Department of Architecture, which is experienced with the study of creative transformation and reframing of the urban and environmental multimodal experiences through the use of AR and VR technologies, and (3) “Apoplou”, an IT Company with experience in the implementation of interactive digital applications. The research project proposes the design of innovative infrastructure of digital educational escape games for mobile devices and computers, with the use of Virtual Reality and Augmented Reality for the promotion of Greek cultural heritage in Greece and abroad. In particular, the project advocates the combination of Greek cultural heritage and literature, digital technologies advancements and the implementation of innovative gamifying practices. The cultural experience of the players will take place in 3 layers: (1) In space: the digital games produced are going to utilize the dual character of the space as a cultural landscape (the real space - landscape but also the space - landscape as presented with the technologies of augmented reality and virtual reality). (2) In literary texts: the selected texts of Greek writers will support the sense of place and the multi-sensory involvement of the user, through the context of space-time, language and cultural characteristics. (3) In the philosophy of the "escape game" tool: whether played in a computer environment, indoors or outdoors, the spatial experience is one of the key components of escape games. The innovation of the project lies both in the junction of Augmented/Virtual Reality with the promotion of cultural points of interest, as well as in the interactive, gamified practices of literary texts. The digital escape game infrastructure will be highly interactive, integrating the projection of Greek landscape cultural elements and digital literary text analysis, supporting the creation of escape games, establishing and highlighting new playful ways of experiencing iconic cultural places, such as Elefsina, Skiathos etc. The literary texts’ content will relate to specific elements of the Greek cultural heritage depicted by prominent Greek writers and poets. The majority of the texts will originate from Greek educational content available in digital libraries and repositories developed and maintained by CTI. The escape games produced will be available for use during educational field trips, thematic tourism holidays, etc. In this paper, the methodology adopted for infrastructure development will be presented. The research is based on theories of place, gamification, gaming development, making use of corpus linguistics concepts and digital humanities practices for the compilation and the analysis of literary texts.

Keywords: escape games, cultural landscapes, gamification, digital humanities, literature

Procedia PDF Downloads 257
5068 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap

Authors: Batuhan Kocaoglu

Abstract:

Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.

Keywords: digital transformation, digital business, ERP, roadmap

Procedia PDF Downloads 175