Search results for: VIIRS data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25327

Search results for: VIIRS data

22027 Exploring Causes of Homelessness and Shelter Entry: A Case Study Analysis of Shelter Data in New York

Authors: Lindsay Fink, Sarha Smith-Moyo, Leanne W. Charlesworth

Abstract:

In recent years, the number of individuals experiencing homelessness has increased in the United States. This paper analyzes 2019 data from 16 different emergency shelters in Monroe County, located in Upstate New York. The data were collected through the County’s Homeless Management Information System (HMIS), and individuals were de-identified and de-duplicated for analysis. The purpose of this study is to explore the basic characteristics of the homeless population in Monroe County, and the dynamics of shelter use. The results of this study showed gender as a significant factor when analyzing the relationship between demographic variables and recorded reasons for shelter entry. Results also indicated that age and ethnicity did not significantly influence odds of re-entering a shelter, but did significantly influence reasons for shelter entry. Overall, the most common recorded cause of shelter entry in 2019 in the examined county was eviction by primary tenant. Recommendations to better address recurrent shelter entry and potential chronic homelessness include more consideration for the diversity existing within the homeless population, and the dynamics leading to shelter stays, including enhanced funding and training for shelter staff, as well as expanded access to permanent supportive housing programs.

Keywords: chronic homelessness, homeless shelter stays, permanent supportive housing, shelter population dynamics

Procedia PDF Downloads 161
22026 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures ‎in the Iranian Roads Network

Authors: M. Mokhber, J. Hedayati

Abstract:

From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, ‎‏9‏‎ roads with the overall ‎length of about ‎‎‏1000‏‎ Km of high-risk corridors are considered as preferences of ‎safety measures‎.

Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures

Procedia PDF Downloads 180
22025 Drying Modeling of Banana Using Cellular Automata

Authors: M. Fathi, Z. Farhaninejad, M. Shahedi, M. Sadeghi

Abstract:

Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.

Keywords: banana, cellular automata, drying, modeling

Procedia PDF Downloads 443
22024 Implementation of Clinical Monitoring System of Physiological Parameters

Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi

Abstract:

Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.

Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health

Procedia PDF Downloads 478
22023 An Analytical Approach for Medication Protocol Errors from Pediatric Nurse Curriculum

Authors: Priyanka Jani

Abstract:

The main focus of this research is to consider the objective of nursing curriculum in concern with pediatric nurses in respect to various parameters such as causes, reporting and prevention of medication protocol errors. A design or method selected for the study is the descriptive and cross sectional with respect to analytical study. Nurses were selected from inpatient pediatric wards of 5 hospitals in Gujarat, as a population. 126 pediatric nurses gave approval to participate in the research and completed with quarter questionnaires. The actual data was collected and analyzed. The actual data was collected and analyzed. The medium age of the nurses was 25.7 ± 3.68 years; the maximum was lady (97.6%) pediatric nurses stated that the most common causes of medication protocol errors were large work time (69.2%) and a huge ratio of patient: nurse (59.9%). Even though the highest number of nurses (89%) made use of a medication protocol errors notification system, or else they use to check it before. Many errors were not reported and nurses cited abeyant claims of nurses in case of adverse and opposite output for patient (53.97%), distrust (52.45%), and fear of various/different protocol for mediations (42%) among the causes of insufficient of notification in concern to ignorance, nurses most commonly noted the requirement for efficient data concerning the safe use of medications (47.5%). This is the frequent study made by researcher in Gujarat about the pediatric nurse curriculum regarding medication protocol errors. The outputs debate that there is a requirement for ongoing coaching of pediatric nurses regarding safe & secure medication observation and that the causes and post reporting of medication protocol errors by hand further survey.

Keywords: pediatric, medication, protocol, errors

Procedia PDF Downloads 294
22022 The Incidence of Metabolic Syndrome in Women with Impaired Reproductive Function According to Astana, Kazakhstan

Authors: A. T. Nakysh, A. S. Idrisov, S. A. Baidurin

Abstract:

This work presents the results of a study the incidence of metabolic syndrome (MetS) in women with impaired reproductive function (IRF) according to the data of Astana, Kazakhstan. The anthropometric, biochemical and instrumental studies were conducted among 515 women, of which 53 patients with MetS according to IDF criteria, 2006, were selected. The frequency of occurrence of the IRF, due to MetS – 10.3% of cases according to the data of Astana. In women of childbearing age with IRF and the MetS, blood pressure (BP), indicators of carbohydrate and lipid metabolism were significantly higher and the level of high density lipoprotein (HDL) significantly lower compared to the same in women with the IRF without MetS. The hyperandrogenism, the hyperestrogenemia, the hyperprolactinemia and the hypoprogesteronemia were found in the patients with MetS and IRF, indicating the impact of MetS on the development of the polycystic ovary syndrome in 28% of cases and hyperplastic processes of the myometrium in 20% of cases.

Keywords: dyslipidemia, insulin resistance, metabolic syndrome, reproductive disorders, obesity

Procedia PDF Downloads 327
22021 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 335
22020 Performance of BLDC Motor under Kalman Filter Sensorless Drive

Authors: Yuri Boiko, Ci Lin, Iluju Kiringa, Tet Yeap

Abstract:

The performance of a BLDC motor controlled by the Kalman filter-based position-sensorless drive is studied in terms of its dependence on the system’s parameters' variations. The effects of system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is a closed-loop control scheme with a Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals Δθ of rotor’s angular position θᵢ, i.e., keeping Δθ=const. In case (2), the data collection time points tᵢ are separated by equal sampling time intervals Δt=const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the torque ripples, switching spikes, torque load balancing. It is specifically shown that an efficient suppression of commutation induced torque ripples is achievable selection of the sampling rate in the Kalman filter settings above certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.

Keywords: BLDC motor, Kalman filter, sensorless drive, state variables, torque ripples reduction, sampling rate

Procedia PDF Downloads 150
22019 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 99
22018 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 70
22017 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir

Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam

Abstract:

Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.

Keywords: Gumai, gas while drilling, classification, reservoir, potential

Procedia PDF Downloads 358
22016 A Forward-Looking View of the Intellectual Capital Accounting Information System

Authors: Rbiha Salsabil Ketitni

Abstract:

The entire company is a series of information among themselves so that each information serves several events and activities, and the latter is nothing but a large set of data or huge data. The enormity of information leads to the possibility of losing it sometimes, and this possibility must be avoided in the institution, especially the information that has a significant impact on it. In most cases, to avoid the loss of this information and to be relatively correct, information systems are used. At present, it is impossible to have a company that does not have information systems, as the latter works to organize the information as well as to preserve it and even saves time for its owner and this is the result of the speed of its mission. This study aims to provide an idea of an accounting information system that opens a forward-looking study for its manufacture and development by researchers, scientists, and professionals. This is the result of most individuals seeing a great contradiction between the work of an information system for moral capital and does not provide real values when measured, and its disclosure in financial reports is not distinguished by transparency.

Keywords: accounting, intellectual capital, intellectual capital accounting, information system

Procedia PDF Downloads 90
22015 Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems

Authors: Samuel Kaspi, Sitalakshmi Venkatraman

Abstract:

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Keywords: in-memory database, disk-based system, hybrid database, concurrency control

Procedia PDF Downloads 422
22014 Detection of New Attacks on Ubiquitous Services in Cloud Computing and Countermeasures

Authors: L. Sellami, D. Idoughi, P. F. Tiako

Abstract:

Cloud computing provides infrastructure to the enterprise through the Internet allowing access to cloud services at anytime and anywhere. This pervasive aspect of the services, the distributed nature of data and the wide use of information make cloud computing vulnerable to intrusions that violate the security of the cloud. This requires the use of security mechanisms to detect malicious behavior in network communications and hosts such as intrusion detection systems (IDS). In this article, we focus on the detection of intrusion into the cloud sing IDSs. We base ourselves on client authentication in the computing cloud. This technique allows to detect the abnormal use of ubiquitous service and prevents the intrusion of cloud computing. This is an approach based on client authentication data. Our IDS provides intrusion detection inside and outside cloud computing network. It is a double protection approach: The security user node and the global security cloud computing.

Keywords: cloud computing, intrusion detection system, privacy, trust

Procedia PDF Downloads 327
22013 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)

Authors: A. Bouzekri, H. Benmassaud

Abstract:

Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.

Keywords: remote sensing, spatiotemporal, land use, Aurès

Procedia PDF Downloads 339
22012 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data

Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas

Abstract:

Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazard

Keywords: flood hazard, space borne data, object based image analysis, rapid damage assessment

Procedia PDF Downloads 331
22011 Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone

Authors: Mostafa Mohammadpour, Christoph Kapeller, Christy Li, Josef Scharinger, Christoph Guger

Abstract:

Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy.

Keywords: spike propagation, spike pattern, clustering, SOZ

Procedia PDF Downloads 75
22010 Association of Extremity Injuries with Safety Gear and Clothing of Hospitalized Motorcycle Riders: A Prospective Study

Authors: Sanjaya N. Munasinghe, R. Gnanasekeram, Dimuthu Tennakoon

Abstract:

During the last few years there has been a dramatic increase in the number of motorcyclists in Sri Lankan roads and thus an increase of motorcycle accidents (MCAs) with a heavy death and casualty toll. Extremity injuries due to MCAs cause a heavy burden on government hospitals. However, data on MCA injuries are limited. This study tries to determine the relationship between extremity injuries with protective gears and clothing motorcycle riders were wearing at the time of the accident. Data were collected from 410 motorcycle riders and passengers involved with MCAs and admitted to orthopedic and emergency observation wards in Teaching Hospital Kurunegala with extremity injuries between 1st February 2015 and 31st July 2015 using an interviewer administered questioner. Data were analyzed using SPSS version 17.0. Distal radial fracture is the most common upper extremity injury (12%), and Tibial fracture is the most common and severe lower extremity injury (23%). Very few participants were wearing safety gloves (2%) and jackets (10%). Most of the participants were wearing slippers (66%), short sleeved upper clothing (96%) and light cloth trousers (49%). According to Chi-square test associations were found between footwear and foot injuries (p-value - 0.001, Cramer's v-value - 0.203) and safety jacket and upper extremity injuries (p-value - 0.002, Cramer's v-value - 0.177). The results indicate that using safety gear can minimize the number of injuries in MCA victims. Thus it is necessary to ensure that motorcycle riders and pillion riders use proper safety gear.

Keywords: extremity injuries, fractures, motorcycle accidents, safety gear

Procedia PDF Downloads 297
22009 Impact of Economic Crisis on Secondary Education in Anambra State

Authors: Stella Nkechi Ezeaku, Ifunanya Nkechi Ohamobi

Abstract:

This study investigated the impact of economic crisis on education in Anambra state. The population of the study comprised of all principals and teachers in Anambra state numbering 5,887 (253 principles and 5,634 teachers). To guide the study, three research questions and one hypothesis were formulated correlational design was adopted. Stratified random sampling technique was used to select 200 principals and 300 teachers as respondents for the study. A researcher-developed instrument tagged Impact of Economic Crisis on Education questionnaire (IECEQ) was used to collect data needed for the study. The instrument was validated by experts in measurement and evaluation. The reliability of the instrument was established using randomly selected members of the population who did not take part in the study. The data obtained was analyzed using Cronbach alpha technique and reliability co-efficient of .801 and .803 was obtained. The data were analyzed using simple and Multiple Regression Analysis. The formulated hypothesis was tested at .05 level of significance. Findings revealed that: there is a significant relationship between economic crisis and realization of goals of secondary education. The result also shows that economic crisis affect students' academic performance, teachers' morale and productivity and principals' administrative capability. This study therefore concludes that certain strategies must be devised to minimize the impact of economic crisis on secondary education. It is recommended that all stakeholders to education should be more resourceful and self-sufficient in order to cushion the effects of economic crisis currently gripping most world economies Nigeria inclusive.

Keywords: impact, economic, crisis, education

Procedia PDF Downloads 247
22008 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 332
22007 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 490
22006 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 369
22005 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 185
22004 Scaling up Potato Economic Opportunities: Evaluation of Youths Participation in Potato Value Chain in Nigeria

Authors: Chigozirim N. Onwusiribe, Jude A. Mbanasor

Abstract:

The potato value chain when harnessed can engage numerous youths and aid in the fight against poverty, malnutrition and unemployment. This study seeks to evaluate the level of youth participation in the potato value chain in Nigeria. Specifically, this study will examine the extent of youth participation in potato value chain, analyze the cost, benefits and sustainability of youth participation in the potato value chain, identify the factors that can propel or hinder youth participation in the potato value chain and make recommendations that will result in the increase in youth employment in the potato value chain. This study was conducted in the North Central and South East geopolitical zones of Nigeria. A multi stage sampling procedure was used to select 540 youths from the study areas. Focused group discussions and survey approach was used to elicit the required data. The data were analyzed using statistical and econometric tools. The study revealed that the potato value chain is very profitable.

Keywords: value, chain, potato, youth, enterprise

Procedia PDF Downloads 162
22003 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 111
22002 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam

Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard

Abstract:

Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.

Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers

Procedia PDF Downloads 117
22001 Content Analysis and Attitude of Thai Students towards Thai Series “Hormones: Season 2”

Authors: Siriporn Meenanan

Abstract:

The objective of this study is to investigate the attitude of Thai students towards the Thai series "Hormones the Series Season 2". This study was conducted in the quantitative research, and the questionnaires were used to collect data from 400 people of the sample group. Descriptive statistics were used in data analysis. The findings reveal that most participants have positive comments regarding the series. They strongly agreed that the series reflects on the way of life and problems of teenagers in Thailand. Hence, the participants believe that if adults have a chance to watch the series, they will have the better understanding of the teenagers. In addition, the participants also agreed that the contents of the play are appropriate and satisfiable as the contents of “Hormones the Series Season 2” will raise awareness among the teens and use it as a guide to prevent problems that might happen during their teenage life.

Keywords: content analysis, attitude, Thai series, hormones the Series

Procedia PDF Downloads 232
22000 Using Collaborative Pictures to Understand Student Experience

Authors: Tessa Berg, Emma Guion Akdag

Abstract:

Summative feedback forms are used in academia for gathering data on course quality and student understanding. Students answer a series of questions based on the course they are soon to finish in these forms. Feedback forms are notorious for being homogenised and limiting and thus the data captured is often neutral and lacking in tacit emotional responses. This paper contrasts student feedback forms with collaborative drawing. We analyse 19 pictures drawn by international students on a pre-sessional course. Through visuals we present an approach to enable a holistic level of student understanding. Visuals communicate irrespective of possible language, cultural and educational barriers. This paper sought to discover if the pictures mirrored the feedback given on a typical feedback form. Findings indicate a considerable difference in the two approaches and thus we highlight the value of collaborative drawing as a complimentary resource to aid the understanding of student experience.

Keywords: feedback forms, visualisation, student experience, collaborative drawing

Procedia PDF Downloads 347
21999 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 377
21998 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets

Authors: Basiru Amuneni

Abstract:

Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.

Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality

Procedia PDF Downloads 98