Search results for: vector information
11411 Towards A New Maturity Model for Information System
Authors: Ossama Matrane
Abstract:
Information System has become a strategic lever for enterprises. It contributes effectively to align business processes on strategies of enterprises. It is regarded as an increase in productivity and effectiveness. So, many organizations are currently involved in implementing sustainable Information System. And, a large number of studies have been conducted the last decade in order to define the success factors of information system. Thus, many studies on maturity model have been carried out. Some of this study is referred to the maturity model of Information System. In this article, we report on development of maturity models specifically designed for information system. This model is built based on three components derived from Maturity Model for Information Security Management, OPM3 for Project Management Maturity Model and processes of COBIT for IT governance. Thus, our proposed model defines three maturity stages for corporate a strong Information System to support objectives of organizations. It provides a very practical structure with which to assess and improve Information System Implementation.Keywords: information system, maturity models, information security management, OPM3, IT governance
Procedia PDF Downloads 44911410 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices
Authors: Abdeghani Qadem
Abstract:
Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas
Procedia PDF Downloads 6911409 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations
Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen
Abstract:
Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.Keywords: earthquake early warning, on-site, seismometer location, support vector machine
Procedia PDF Downloads 24411408 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 33511407 Molecular Detection of Crimean-Congo Hemorrhagic Fever in Ticks of Golestan Province, Iran
Authors: Nariman Shahhosseini, Sadegh Chinikar
Abstract:
Introduction: Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe disease with fatality rates of 30%. The virus is transmitted to humans through the bite of an infected tick, direct contact with the products of infected livestock and nosocomially. The disease occurs sporadically throughout many of African, Asian, and European countries. Different species of ticks serve either as vector or reservoir for CCHFV. Materials and Methods: A molecular survey was conducted on hard ticks (Ixodidae) in Golestan province, north of Iran during 2014-2015. Samples were sent to National Reference Laboratory of Arboviruses (Pasteur Institute of Iran) and viral RNA was detected by RT-PCR. Results: Result revealed the presence of CCHFV in 5.3% of the selected ticks. The infected ticks belonged to Hy. dromedarii, Hy. anatolicum, Hy. marginatum, and Rh. sanguineus. Conclusions: These data demonstrates that Hyalomma ticks are the main vectors of CCHFV in Golestan province. Thus, preventive strategies such as using acaricides and repellents in order to avoid contact with Hyalomma ticks are proposed. Also, personal protective equipment (PPE) must be utilized at abattoirs.Keywords: tick, CCHFV, surveillance, vector diversity
Procedia PDF Downloads 37211406 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 40811405 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor
Authors: Jadisha Cornejo, Helio Pedrini
Abstract:
Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks
Procedia PDF Downloads 18311404 Short Text Classification for Saudi Tweets
Authors: Asma A. Alsufyani, Maram A. Alharthi, Maha J. Althobaiti, Manal S. Alharthi, Huda Rizq
Abstract:
Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user.Keywords: corpus creation, feature extraction, machine learning, short text classification, social media, support vector machine, Twitter
Procedia PDF Downloads 15511403 Molecular Screening of Piroplasm from Ticks Collected from Sialkot, Gujranwala and Gujarat Districts of Punjab, Pakistan
Authors: Mahvish Maqbool, Muhmmad Sohail Sajid
Abstract:
Ticks (Acari: Ixodidae); bloodsucking parasites of domestic animals, have significant importance in the transmission of diseases and causing huge economic losses. This study aimed to screen endophilic ticks for the Piroplasms using polymerase chain reaction in three districts Sialkot, Gujranwala and Gujarat of Punjab, Pakistan. Ticks were dissected under a stereomicroscope, and internal organs (midguts& salivary glands) were procured to generate pools of optimum weights. DNA extraction was done through standard protocol followed by primer specific PCR for Piroplasma spp. A total of 22.95% tick pools were found positive for piroplasma spp. In districts, Sialkot and Gujranwala Piroplasma prevalence are higher in riverine animals while in Gujarat Prevalence is higher in non-riverine animals. Female animals were found more prone to piroplasma as compared to males. This study will provide useful data on the distribution of Piroplasma in the vector population of the study area and devise future recommendations for better management of ruminants to avoid subclinical and clinical infections and vector transmitted diseases.Keywords: babesia, hyalomma, piroplasmposis, tick infectivity
Procedia PDF Downloads 17711402 A Physical Theory of Information vs. a Mathematical Theory of Communication
Authors: Manouchehr Amiri
Abstract:
This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived.Keywords: physical theory of information, binary data matrix model, Shannon information theory, bit information principle
Procedia PDF Downloads 17411401 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability
Authors: Mohsina Akhter
Abstract:
Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics
Procedia PDF Downloads 31411400 The Effect of Supply Chain Integration on Information Sharing
Authors: Khlif Hamadi
Abstract:
Supply chain integration has become a potentially valuable way of securing shared information and improving supply chain performance since competition is no longer between organizations but among supply chains. This research conceptualizes and develops three dimensions of supply chain integration (integration with customers, integration with suppliers, and the interorganizational integration) and tests the relationships between supply chain integration, information sharing, and supply chain performance. Furthermore, the four types of information sharing namely; information sharing with customers, information sharing with suppliers, inter-functional information sharing, and intra-organizational information sharing; and the four constructs of Supply Chain Performance represents expenses of costs, asset utilization, supply chain reliability, and supply chain flexibility and responsiveness. The theoretical and practical implications of the study, as well as directions for future research, are discussed.Keywords: supply chain integration, supply chain management, information sharing, supply chain performance
Procedia PDF Downloads 26311399 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 7311398 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities
Authors: Chusak Thanawattano, Roongroj Bhidayasiri
Abstract:
This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation
Procedia PDF Downloads 44311397 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 47711396 Factors Affecting Human Resource Managers Information Behavior
Authors: Sevim Oztimurlenk
Abstract:
This is an exploratory study on the information behavior of human resource managers. This study is conducted by using a questionnaire survey and an interview. The data is gathered from 140 HR managers who are members of the People Management Association of Turkey (PERYÖN), and the 15 interviewees were chosen among those 140 survey participants randomly. The goal of this exploratory study is to investigate the impact of some factors (i.e., gender, age, work experience, number of employee reporting, company size, industry type) on HR managers’ information behavior. More specifically, it examines if there is a relationship between those factors and HR managers’ information behavior in terms of what kind of information sources they consult and reviews and whom they prefer to communicate with for information sharing. It also aims to find out additional factors influencing the information behavior of HR managers. The results of the study show that age and industry type are the two factors affecting the information behavior of HR managers, among other factors investigated in terms of information source, use and share. Moreover, personality, technology, education, organizational culture, and culture are the top five factors among the 24 additional factors suggested by HR managers who participated in this study.Keywords: information behavior, information use, information source, information share, human resource managers
Procedia PDF Downloads 14511395 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 8411394 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 59511393 Information Technologies in Automotive Assembly Industry in Thailand
Authors: Jirarat Teeravaraprug, Usawadee Inklay
Abstract:
This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given.Keywords: information technology, automotive assembly industry, fuzzy DEMATEL
Procedia PDF Downloads 34711392 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10911391 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 44511390 Information Seekers vs. Information Providers: New Vistas and New Challenges for the Libraries Today; A Case Study of the Panjab University Library, Chandigarh, India
Authors: Neeru Bhatia
Abstract:
This article presents the results of a case study designed to analyze and deduce Information seekers and the Information Providers in today’s context, wherein we come across a sea of change in the provision of Information services due to the changing electronic environment. The Panjab University Library is one of the biggest libraries of India and was inaugurated in 1963 by Pt. Jawaharlal Nehru, the then Prime Minister of India. The library always thrives to assimilate new technology for the provision of Information services. As we know that the Information seekers today are a whole lot different, they are tech savvy, like to be on their electronic gadgets most of the time, and their Information seeking patterns are also different, the challenge that lies before the libraries is to be always ready for these day to day challenges. The study explores the current status of the Information Services being provided by the Panjab University Library (the Information Providers) vs. the evaluation of these Information services by the users of Library (the Information Seekers). The present study aimed at finding out whether Panjab University Library is able to achieve its mission to be an innovative and user-oriented library by exploring all the new vistas and reach up to the expectations of the information seekers by taking up all the challenges being posed by the ever changing technological scenario.Keywords: electronic environment, information seekers, information providers, new technology
Procedia PDF Downloads 26611389 Electronic Resources and Information Literacy in Higher Education Library
Authors: Nirmal Singh, Rajesh Kumar
Abstract:
Abstract- Information literacy aims to develop both critical understanding and active participation in scholars. It enables scholars to interpret and make informed judgments as users of information sources, and it also enables them to become producers of information in their own right, and thereby to become more powerful participants in society. Information literacy is about developing people‘s critical and creative abilities. Digital media – and particularly the Internet – significantly increase the potential for such active participation of the individual, provided scholars have the means and training to effectively access and use them. This paper provides definition, standards and importance of information literacy (IL). Keywords: Information literacy, Digital Media, Training, Communications Technologies.Keywords: Information literacy, Digital Media, Training, , Communications Technologies
Procedia PDF Downloads 15911388 Texture-Based Image Forensics from Video Frame
Authors: Li Zhou, Yanmei Fang
Abstract:
With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.Keywords: multimedia forensics, video frame, LBP, MTP, SVM
Procedia PDF Downloads 42811387 Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)
Authors: Robert Jacobsen
Abstract:
Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated.Keywords: hydrology, mapping, high-definition, inundation
Procedia PDF Downloads 8211386 Simulation-Based Investigation of Ferroresonance in Different Transformer Configurations
Authors: George Eduful, Yuanyuan Fan, Ahmed Abu-Siada
Abstract:
Ferroresonance poses a substantial threat to the quality and reliability of power distribution systems due to its inherent characteristics of sustained overvoltages and currents. This paper aims to enhance the understanding and reduce the ferroresonance threat by investigating the susceptibility of different transformer configurations using MATLAB/Simulink simulations. To achieve this, four 200 kVA transformers with different vector groups (D-Yn, Yg-Yg, Yn-Yn, and Y-D11) and core types (3-limb, 5-limb, single-phase) were systematically exposed to controlled ferroresonance conditions. The impact of varying the length of the 11 kV cable connected to the transformers was also examined. Through comprehensive voltage, current, and total harmonic distortion analyses, the performance of each configuration was evaluated and compared. The results of the study indicate that transformers with Y-D11 and Yg-Yg configurations exhibited lower susceptibility to ferroresonance, in comparison to those with D-Y11 and Yg-Yg configurations. This implies that the Y-D11 and Yg-Yg transformers are better suited for applications with high risks of ferroresonance. The insights provided by this study are of significant value for the strategic selection and deployment of transformers in power systems, particularly in settings prone to ferroresonance. By identifying and recommending transformer configurations that demonstrate better resilience, this paper contributes to enhancing the overall robustness and reliability of power grid infrastructure.Keywords: about cable-connected, core type, ferroresonance, over voltages, power transformer, vector group
Procedia PDF Downloads 4411385 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 35911384 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 15711383 Formal Implementation of Routing Information Protocol Using Event-B
Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura
Abstract:
The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.Keywords: dynamic rout RIP, formal method, event-B, pro-B
Procedia PDF Downloads 40311382 A Framework for Information Quality in Accounting Information Systems Adoption
Authors: Wongsim Manirath
Abstract:
In order to implement AIS adoption successfully, it is important to consider the quality of information management and understand Information Quality (IQ) factors influencing AIS adoption. This research aims to explore ways of managing AIS adoption to investigate the adoption of accounting information systems within organisations. The study has led to the development of a framework for understanding the AIS adoption process in an organisation. This research used qualitative, interpretive evidence. This framework was developed from case studies and by collecting qualitative data (interviews). This research has conducted 10 case studies to study how IQ is managed through the accounting information system adoption process. A special focus is placed on determining how organisation size influences the information quality practices. The finding is especially useful to SMEs as many SMEs have the desire to grow bigger. By better dealing with IQ issues, there could be a successful future.Keywords: data quality, information quality, accounting information system, information management
Procedia PDF Downloads 468