Search results for: structural strengthening
4582 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames
Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim
Abstract:
Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.004% in a year.Keywords: expected annual loss, loss estimation, RC structure, fragility analysis
Procedia PDF Downloads 3974581 Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins
Authors: Akash Bera, Suraj Singh, Jacinta Dsouza, Ramakrishna V. Hosur, Pushpa Mishra
Abstract:
Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer.Keywords: Bid, Bcl-xl, UVC, apoptosis
Procedia PDF Downloads 1274580 Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Authors: Mst Nazmunnahar, Juan del Val, Alena Vimmrova, Blanca Hernando, Julian González
Abstract:
We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.Keywords: as-cast ribbon, Heusler alloys, magnetic properties, structural transformation
Procedia PDF Downloads 4564579 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 3654578 Structural Optimization Using Catenary and Other Natural Shapes
Authors: Mitchell Gohnert
Abstract:
This paper reviews some fundamental concepts of structural optimization, which is focused on the shape of the structure. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape to accommodate natural stress flow. The main objective of structural optimization is to direct the thrust line along the axis of the member. Optimal shapes include the catenary arch or dome, triangular shapes, and columns. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined. Structures, however, must resist multiple load patterns. An optimal shape is still possible by ensuring that the thrust lines fall within the middle third of the member.Keywords: optimization, natural structures, shells, catenary, domes, arches
Procedia PDF Downloads 434577 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein
Authors: Y. Ruchi, A. Prerna, S. Deepshikha
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.Keywords: ALS, binding site, homology modeling, neuronal degeneration
Procedia PDF Downloads 3894576 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality
Procedia PDF Downloads 1314575 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi
Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou
Abstract:
We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition
Procedia PDF Downloads 4454574 Gamma Irradiation Effects on the Crystal Structural and Transport Properties of Bi₂Te₃ Thin Films Grown by Thermal Evaporation
Authors: Shoroog Alraddadi
Abstract:
In this study, the effect of gamma irradiation on the structural and transport properties of Bismuth Telluride (Bi₂Te₃) thin films was investigated. Bi₂Te₃ thin films with thicknesses varying from 100 nm to 500 nm were grown using thermal evaporation in vacuum 10⁻⁵ Torr. The films were irradiated by Gamma radiation with different doses (50, 200, and 500 kGy). The crystal structure of Bi₂Te₃ thin films was studied by XRD diffraction. It was showed that the degree of crystallinity of films increases as the doses increase. Furthermore, it was found that the electrical conductivity of Bi₂Te₃ increase as the doses increase. From these results, it can be concluding that the effect of radiation on the structural and transport properties was positive at the levels of irradiation used.Keywords: bismuth telluride, gamma irradiation, thin film, transport properties
Procedia PDF Downloads 1564573 Concrete Mixes for Sustainability
Authors: Kristyna Hrabova, Sabina Hüblova, Tomas Vymazal
Abstract:
Structural design of concrete structure has the result in qualities of structural safety and serviceability, together with durability, robustness, sustainability and resilience. A sustainable approach is at the heart of the research agenda around the world, and the Fibrillation Commission is also working on a new model code 2020. Now it is clear that the effects of mechanical, environmental load and even social coherence need to be reflected and included in the designing and evaluating structures. This study aimed to present the methodology for the sustainability assessment of various concrete mixtures.Keywords: concrete, cement, sustainability, Model Code 2020
Procedia PDF Downloads 1784572 Reduction of Differential Column Shortening in Tall Buildings
Authors: Hansoo Kim, Seunghak Shin
Abstract:
The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique.Keywords: column shortening, long-term behavior, optimization, tall building
Procedia PDF Downloads 2494571 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran
Authors: Iman Shabanzadeh
Abstract:
Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience
Procedia PDF Downloads 634570 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi
Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou
Abstract:
We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition
Procedia PDF Downloads 3054569 Structural Health Monitoring of Buildings–Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method
Procedia PDF Downloads 3684568 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures
Procedia PDF Downloads 2544567 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure
Authors: Ersilio Tushaj
Abstract:
The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.Keywords: structural optimization, non-deterministic methods, truss structures, steel truss
Procedia PDF Downloads 2304566 Structural Analysis and Modelling in an Evolving Iron Ore Operation
Authors: Sameh Shahin, Nannang Arrys
Abstract:
Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation
Procedia PDF Downloads 464565 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads
Authors: S. Kamil Akin, Turgut Acikara
Abstract:
In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation
Procedia PDF Downloads 4394564 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi
Abstract:
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model
Procedia PDF Downloads 4564563 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method
Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas
Abstract:
Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.Keywords: co-precipitation, ferrites, magnetic behavior, structure
Procedia PDF Downloads 2494562 Use of Benin Laterites for the Mix Design of Structural Concrete
Authors: Yemalin D. Agossou, Andre Lecomte, Remi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil
Abstract:
This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step, concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is, therefore, possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.Keywords: laterites, aggregates, concretes, mix design, mechanical properties
Procedia PDF Downloads 1594561 Embedment Design Concept of Signature Tower in Chennai
Authors: M. Gobinath, S. Balaji
Abstract:
Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.Keywords: structure, construction, signature tower, embedment design concept
Procedia PDF Downloads 3014560 Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region
Authors: Efua Ehiaguina, Haruna Moda
Abstract:
Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.Keywords: oil and gas safety, safety behaviour, safety culture, safety compliance
Procedia PDF Downloads 1434559 Mechanical Structural and Optical Properties of Lu₂SiO₅ Scintillator-Polymer Composite Films
Authors: M. S. E. Hamroun, K. Bachari, A. Berrayah, L. Mechernene, L. Guerbous
Abstract:
Composite films containing homogeneously dispersed scintillation nano-particles of Lu₂SiO₅:Ce³⁺, in optically transparent polymer matrix, have been prepared and characterized through X-ray diffraction, differential scanning calorimetric (DSC), thermogravimetric analysis (ATG), dynamic mechanical analysis (DMA), electron scanning microscopy morphology (SEM) and photoluminescence (PL). Lu₂SiO₅:Ce³⁺ scintillator powder was successfully synthesized via Sol-Gel method. This study is realized with different mass ratios of nano-particles embedded in polystyrene and polylactic acid polymer matrix (5, 10, 15, 20%) to see the influence of nano-particles on the mechanical, structural and optical properties of films. The composites have been prepared with 400 µm thickness. It has found that the structural proprieties change with mass ratio on each sample. PL photoluminescence shows the characteristic Lu₂SiO₅:Ce³⁺ emission in the blue region and intensity varied for each film.Keywords: nano-particles, sol gel, photoluminescence, Ce³⁺, scintillator, polystyrene
Procedia PDF Downloads 1204558 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques
Authors: Javad Yarmahmoudi, Alireza Mirzaee
Abstract:
Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT
Procedia PDF Downloads 3274557 Explanation Conceptual Model of the Architectural Form Effect on Structures in Building Aesthetics
Authors: Fatemeh Nejati, Farah Habib, Sayeh Goudarzi
Abstract:
Architecture and structure have always been closely interrelated so that they should be integrated into a unified, coherent and beautiful universe, while in the contemporary era, both structures and architecture proceed separately. The purpose of architecture is the art of creating form and space and order for human service, and the goal of the structural engineer is the transfer of loads to the structure, too. This research seeks to achieve the goal by looking at the relationship between the form of architecture and structure from its inception to the present day to the Global Identification and Management Plan. Finally, by identifying the main components of the design of the structure in interaction with the architectural form, an effective step is conducted in the Professional training direction and solutions to professionals. Therefore, after reviewing the evolution of structural and architectural coordination in various historical periods as well as how to reach the form of the structure in different times and places, components are required to test the components and present the final theory that one hundred to be tested in this regard. Finally, this research indicates the fact that the form of architecture and structure has an aesthetic link, which is influenced by a number of components that could be edited and has a regular order throughout history that could be regular. The research methodology is analytic, and it is comparative using analytical and matrix diagrams and diagrams and tools for conducting library research and interviewing.Keywords: architecture, structural form, structural and architectural coordination, effective components, aesthetics
Procedia PDF Downloads 2154556 Effect of Damper Combinations in Series or Parallel on Structural Response
Authors: Ajay Kumar Sinha, Sharad Singh, Anukriti Sinha
Abstract:
Passive energy dissipation method for earthquake protection of structures is undergoing developments for improved performance. Combined use of different types of damping mechanisms has shown positive results in the near past. Different supplemental damping methods like viscous damping, frictional damping and metallic damping are being combined together for optimum performance. The conventional method of connecting passive dampers to structures is a parallel connection between the damper unit and structural member. Researchers are investigating coupling effect of different types of dampers. The most popular choice among the research community is coupling of viscous dampers and frictional dampers. The series and parallel coupling of these damping units are being studied for relative performance of the coupled system on response control of structures against earthquake. In this paper an attempt has been made to couple Fluid Viscous Dampers and Frictional Dampers in series and parallel to form a single unit of damping system. The relative performance of the coupled units has been studied on three dimensional reinforced concrete framed structure. The current theories of structural dynamics in practice for viscous damping and frictional damping have been incorporated in this study. The time history analysis of the structural system with coupled damper units, uncoupled damper units as well as of structural system without any supplemental damping has been performed in this study. The investigations reported in this study show significant improved performance of coupled system. A higher natural frequency of the system outside the forcing frequency has been obtained for structural systems with coupled damper units as against the other cases. The structural response of the structure in terms of storey displacement and storey drift show significant improvement for the case with coupled damper units as against the cases with uncoupled units or without any supplemental damping. The results are promising in terms of improved response of the structure with coupled damper units. Further investigations in this regard for a comparative performance of the series and parallel coupled systems will be carried out to study the optimum behavior of these coupled systems for enhanced response control of structural systems.Keywords: frictional damping, parallel coupling, response control, series coupling, supplemental damping, viscous damping
Procedia PDF Downloads 4564555 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed
Authors: Tolulope Babawarun, Harry Ngwangwa
Abstract:
The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.Keywords: ANSYS, finite element analysis, static loading, dynamic analysis
Procedia PDF Downloads 874554 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 1594553 Structural and Magnetic Properties of Milled Nickel Powder
Authors: O. M. Lemine
Abstract:
The effect of milling parameters on the structural and magnetic properties of nickel powder was investigated. The samples were characterized by X-ray powder diffraction and vibrating sample magnetometer (VSM). The results did not reveal any phase change of nickel during the milling. The average crystallite size decreases with a prolongation of milling times, whereas the lattice parameters increase. The hysteresis loop reveals the intrinsic magnetic behaviour. It was observed an increase in the magnetization which can be correlated to the volume expansion showed by XRD results.Keywords: nickel powders, nanocrystallines, XRD, VSM
Procedia PDF Downloads 333