Search results for: spherical images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2757

Search results for: spherical images

2457 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
2456 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 330
2455 ‘Saying’ the Nuclear Power in France: Evolution of the Images and Perceptions of a Sensitive Theme

Authors: Jandot Aurélia

Abstract:

As the nuclear power is a sensitive field leading to controversy, the quality of the communication about it is important. Between 1965 and 1981, in France, this one had gradually changed. This change is studied here in the main French news magazine L’Express, in connection with several parameters. As this represents a huge number of copies and occurrences, thus a considerable amount of information; this paper is focused on the main articles as well as the main “mental images”. These ones are important, as their aim is to direct the thought of the readers, and as they have led the public awareness to evolve. Over this 17 years, two trends are in confrontation: The first one is promoting the perception of the nuclear power, while the second one is discrediting it. These trends are organized in two axes: the evolution of engineering, and the risks. In both cases, the changes in the language allow discerning the deepest intentions of the magazine editing, over a period when the nuclear technology, to there a laboratory object accompanied with mystery and secret, has become a social issue seemingly open to all.

Keywords: French news magazine, mental images, nuclear power, public awareness

Procedia PDF Downloads 304
2454 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
2453 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 379
2452 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery

Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok

Abstract:

Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.

Keywords: contrast sensitivity, pterygium, redness, visual acuity

Procedia PDF Downloads 514
2451 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 339
2450 The Visual Side of Islamophobia: A Social-Semiotic Analysis

Authors: Carmen Aguilera-Carnerero

Abstract:

Islamophobia, the unfounded hostility towards Muslims and Islam, has been deeply studied in the last decades from different perspectives ranging from anthropology, sociology, media studies, and linguistics. In the past few years, we have witnessed how the birth of social media has transformed formerly passive audiences into an active group that not only receives and digests information but also creates and comments publicly on any event of their interest. In this way, average citizens now have been entitled with the power of becoming potential opinion leaders. This rise of social media in the last years gave way to a different way of Islamophobia, the so called ‘cyberIslamophobia’. Considerably less attention, however, has been given to the study of islamophobic images that accompany the texts in social media. This paper attempts to analyse a corpus of 300 images of islamophobic nature taken from social media (from Twitter and Facebook) from the years 2014-2017 to see: a) how hate speech is visually constructed, b) how cyberislamophobia is articulated through images and whether there are differences/similarities between the textual and the visual elements, c) the impact of those images in the audience and their reaction to it and d) whether visual cyberislamophobia has undergone any process of permeating popular culture (for example, through memes) and its real impact. To carry out this task, we have used Critical Discourse Analysis as the most suitable theoretical framework that analyses and criticizes the dominant discourses that affect inequality, injustice, and oppression. The analysis of images was studied according to the theoretical framework provided by the visual framing theory and the visual design grammar to conclude that memes are subtle but very powerful tools to spread Islamophobia and foster hate speech under the guise of humour within popular culture.

Keywords: cyberIslamophobia, visual grammar, social media, popular culture

Procedia PDF Downloads 167
2449 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
2448 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 47
2447 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 196
2446 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA

Authors: S. Saju, G. Thirugnanam

Abstract:

In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.

Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet

Procedia PDF Downloads 528
2445 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
2444 Synthesis of ZnO Nanoparticles with Varying Calcination Temperature for Photocatalytic Degradation of Ethylbenzene

Authors: Darlington Ashiegbu, Herman Johannes Potgieter

Abstract:

The increasing utilization of Zinc Oxide (ZnO) as a better alternative to TiO₂ has been attributed to its wide bandgap (3.37eV), lower production cost, ability to absorb over a larger range of the UV-spectrum and higher efficiency in some cases. ZnO nanoparticles were synthesized via sol-gel process and calcined at 400ᵒC, 500ᵒC, and 650ᵒC. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) surface area measurement. Scanning electron micrograph revealed pseudo-spherical and rod-like morphologies and a high rate of agglomeration for the sample calcined at 650ᵒC, Brunnauer Emmett Teller (BET) surface area measurement was highest in the sample calcined at 500ᵒC, energy dispersive X-ray spectroscopy (EDS) results confirmed the purity of the samples as only Zn and O₂ were detected and X-ray diffraction (XRD) results revealed crystalline hexagonal wurtzite structure of the ZnO nanoparticles. All three samples were utilized in the degradation of ethylbenzene, and a UV-Vis spectrophotometer was utilized in monitoring degradation of ethylbenzene. The sample calcined at 500ᵒC had the highest surface area for reaction, lowest agglomeration and the highest photocatalytic activity in the degradation of ethylbenzene. This revealed temperature as a very important factor in improved and higher photocatalytic activity.

Keywords: ethylbenzene, pseudo-spherical, sol-gel, zinc oxide

Procedia PDF Downloads 162
2443 Facility Detection from Image Using Mathematical Morphology

Authors: In-Geun Lim, Sung-Woong Ra

Abstract:

As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.

Keywords: facility detection, satellite image, object, mathematical morphology

Procedia PDF Downloads 381
2442 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 217
2441 Direct Integration of 3D Ultrasound Scans with Patient Educational Mobile Application

Authors: Zafar Iqbal, Eugene Chan, Fareed Ahmed, Mohamed Jama, Avez Rizvi

Abstract:

Advancements in Ultrasound Technology have enabled machines to capture 3D and 4D images with intricate features of the growing fetus. Sonographers can now capture clear 3D images and 4D videos of the fetus, especially of the face. Fetal faces are often seen on the ultrasound scan of the third trimester where anatomical features become more defined. Parents often want 3D/4D images and videos of their ultrasounds, and particularly image that capture the child’s face. Sidra Medicine developed a patient education mobile app called 10 Moons to improve care and provide useful information during the length of their pregnancy. In addition to general information, we built the ability to send ultrasound images directly from the modality to the mobile application, allowing expectant mothers to easily store and share images of their baby. 10 Moons represent the length of the pregnancy on a lunar calendar, which has both cultural and religious significance in the Middle East. During the third trimester scan, sonographers can capture 3D pictures of the fetus. Ultrasound machines are connected with a local 10 Moons Server with a Digital Imaging and Communications in Medicine (DICOM) application running on it. Sonographers are able to send images directly to the DICOM server by a preprogrammed button on the ultrasound modality. Mothers can also request which pictures they would like to be available on the app. An internally built DICOM application receives the image and saves the patient information from DICOM header (for verification purpose). The application also anonymizes the image by removing all the DICOM header information and subsequently converts it into a lossless JPEG. Finally, and the application passes the image to the mobile application server. On the 10 Moons mobile app – patients enter their Medical Record Number (MRN) and Date of Birth (DOB) to receive a One Time Password (OTP) for security reasons to view the images. Patients can also share the images anonymized images with friends and family. Furthermore, patients can also request 3D printed mementos of their child through 10 Moons. 10 Moons is unique patient education and information application where expected mothers can also see 3D ultrasound images of their children. Sidra Medicine staff has the added benefit of a full content management administrative backend where updates to content can be made. The app is available on secure infrastructure with both local and public interfaces. The application is also available in both English and Arabic languages to facilitate most of the patients in the region. Innovation is at the heart of modern healthcare management. With Innovation being one of Sidra Medicine’s core values, our 10 Moons application provides expectant mothers with unique educational content as well as the ability to store and share images of their child and purchase 3D printed mementos.

Keywords: patient educational mobile application, ultrasound images, digital imaging and communications in medicine (DICOM), imaging informatics

Procedia PDF Downloads 140
2440 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring

Authors: Aftab Khan, Ashfaq Khan

Abstract:

The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.

Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures

Procedia PDF Downloads 443
2439 Multiplayer RC-car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative Augmented Reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: multiplayer, RC-car, collaborative environment, augmented reality

Procedia PDF Downloads 289
2438 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
2437 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 327
2436 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar

Authors: Yanli Qi, Ning Lv, Jing Li

Abstract:

Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.

Keywords: inverse synthetic aperture radar (ISAR), deceptive jamming, Sub-Nyquist sampling jamming method (SNSJ), modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)

Procedia PDF Downloads 216
2435 Nanoporous Metals Reinforced with Fullerenes

Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca

Abstract:

Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.

Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals

Procedia PDF Downloads 239
2434 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
2433 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: high fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate

Procedia PDF Downloads 299
2432 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito

Abstract:

Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.

Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP

Procedia PDF Downloads 411
2431 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime

Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar

Abstract:

The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.

Keywords: analcime, hydrothermal synthesis, mordenite, zeolite

Procedia PDF Downloads 263
2430 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 137
2429 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 78
2428 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 130