Search results for: quantum image encryption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3457

Search results for: quantum image encryption

3157 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 129
3156 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 484
3155 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 348
3154 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 75
3153 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark

Procedia PDF Downloads 273
3152 Rashba Spin Orbit Interaction Effect on Multiphoton Optical Transitions in a Quantum Dot for Bioimaging

Authors: Pradip Kumar Jha, Manoj Kumar

Abstract:

We demonstrate in this work the effect of Rashba spin orbit interaction on multiphoton optical transitions of a quantum dot in the presence of THz laser field and external static magnetic field. This combination is solved by accurate non-perturbative Floquet theory. Investigations are made for the optical response of intraband transition between the various states of the conduction band with spin flipping. Enhancement and power broadening observed for excited states probabilities with increase of external fields are directly linked to the emission spectra of QD and will be useful for making future bioimaging devices.

Keywords: bioimaging, multiphoton processes, spin orbit interaction, quantum dot

Procedia PDF Downloads 479
3151 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 514
3150 Research Approaches for Identifying Images of the Past in the Built Environment

Authors: Ahmad Al-Zoabi

Abstract:

Development of research approaches for identifying images of the past in the built environment is at a beginning stage, and a review of the current literature reveals a limited body of research in this area. This study seeks to make a contribution to fill this void. It investigates the theoretical and empirical studies that examine the built environment as a medium for communicating the past in order to understand how images of the past are operationalized in these studies. Findings revealed that image could be operationalized in several ways depending on the focus of the study. Three concerns were addressed in this study when defining the image of the past: (a) to investigate an 'everyday' popular image of the past; (b) to look at the building's image as an integrated part of a larger image for the city; and (c) to find patterns within residents' images of the past. This study concludes that a future study is needed to address the effects of different scales (size and depth of history) of cities and of different cultural backgrounds of images of the past.

Keywords: architecture, built environment, image of the past, research approaches

Procedia PDF Downloads 314
3149 Improvement of Bone Scintography Image Using Image Texture Analysis

Authors: Yousif Mohamed Y. Abdallah, Eltayeb Wagallah

Abstract:

Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve.

Keywords: bone scan, nuclear medicine, Matlab, image processing technique

Procedia PDF Downloads 504
3148 Evaluating the Destination Image of Iran and Its Influence on Revisit Intention: After Iran’s 2022 Crisis

Authors: Hamideh S. Shahidi

Abstract:

This research examines destination image and its impact on tourist revisit intention. Destination images can evolve over time, depending on a number of factors. Due to the multidimensional nature of destination image, the full extent of what might influence that change is not yet fully understood. As a result, the destination image should be measured with a heavy consideration of the variables used. Depending on the time and circumstances, these variables should be adjusted based on the research’s objectives. The aim of this research is to evaluate the image of destinations that may be perceived as risky, such as Iran, from the perspective of European cultural travellers. Further to the goal of understanding the effects of an image on tourists’ decision-making, the research will assess the impact of destination image on the revisit intention using push and pull factors and perceived risks with the potential moderating effect of cultural contact (the direct interaction between the host and the tourists with different culture). In addition, the moderating effect of uncertainty avoidance on revisit intention after Iran’s crisis in 2022 will be measured. Furthermore, the level of uncertainty avoidance between gender and age will be compared.

Keywords: destination image, Iran’s 2022 crisis, revisit intention, uncertainty avoidance

Procedia PDF Downloads 99
3147 An Overview of the Moderating Effect of Overall Satisfaction on Hotel Image and Customer Loyalty

Authors: Nimit Soonsan

Abstract:

Hotel image is a key business issue in today’s hotel market. The current study points to develop and test a relationship of hotel image, overall satisfaction, and future behavior. This paper hypothesizes the correlations among four constructs, namely, hotel image, overall satisfaction, positive word-of-mouth, and intention to revisit. Moreover, this paper will test the mediating effect of overall satisfaction on hotel image and positive word-of-mouth and intention to revisit. These relationships are surveyed for a sample of 244 international customers staying budget hotel in Phuket, Thailand. The structural equation modeling indicates that hotel image directly affects overall satisfaction and indirectly affects future behavior that positive word-of-mouth and intention to revisit. In addition, overall satisfaction had significant influence on future behavior that positive word-of-mouth and intention to revisit, and the mediating role of overall satisfaction is also confirmed in this study. Managerial implications are provided, limitations noted, and future research directions suggested.

Keywords: hotel image, satisfaction, loyalty, moderating

Procedia PDF Downloads 165
3146 Effect of Wetting Layer on the Energy Spectrum of One-Electron Non-Uniform Quantum Ring

Authors: F. A. Rodríguez-Prada, W Gutierrez, I. D. Mikhailov

Abstract:

We study the spectral properties of one-electron non-uniform crater-shaped quantum dot whose thickness is increased linearly with different slopes in different radial directions between the central hole and the outer border and which is deposited over thin wetting layer in the presence of the external vertically directed magnetic field. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron confined in such structure in the zero magnetic field case can be found exactly in an analytical form and they can be used subsequently as the base functions in framework of the exact diagonalization method to study the effect of the wetting layer and an external magnetic field applied along of the grown axis on energy levels of one-electron non-uniform quantum dot. It is shown that both the structural non-uniformity and the increase of the thickness of the wetting layer provide a quenching of the Aharonov-Bohm oscillations of the lower energy levels.

Keywords: electronic properties, quantum rings, volcano shaped, wetting layer

Procedia PDF Downloads 383
3145 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 338
3144 The Impact of Sign Language on Generating and Maintaining a Mental Image

Authors: Yi-Shiuan Chiu

Abstract:

Deaf signers have been found to have better mental image performance than hearing nonsigners. The goal of this study was to investigate the ability to generate mental images, to maintain them, and to manipulate them in deaf signers of Taiwanese Sign Language (TSL). In the visual image task, participants first memorized digits formed in a cell of 4 × 5 grids. After presenting a cue of Chinese digit character shown on the top of a blank cell, participants had to form a corresponding digit. When showing a probe, which was a grid containing a red circle, participants had to decide as quickly as possible whether the probe would have been covered by the mental image of the digit. The ISI (interstimulus interval) between cue and probe was manipulated. In experiment 1, 24 deaf signers and 24 hearing nonsigners were asked to perform image generation tasks (ISI: 200, 400 ms) and image maintenance tasks (ISI: 800, 2000 ms). The results showed that deaf signers had had an enhanced ability to generate and maintain a mental image. To explore the process of mental image, in experiment 2, 30 deaf signers and 30 hearing nonsigners were asked to do visual searching when maintaining a mental image. Between a digit image cue and a red circle probe, participants were asked to search a visual search task to see if a target triangle apex was directed to the right or left. When there was only one triangle in the searching task, the results showed that both deaf signers and hearing non-signers had similar visual searching performance in which the searching targets in the mental image locations got facilitates. However, deaf signers could maintain better and faster mental image performance than nonsigners. In experiment 3, we increased the number of triangles to 4 to raise the difficulty of the visual search task. The results showed that deaf participants performed more accurately in visual search and image maintenance tasks. The results suggested that people may use eye movements as a mnemonic strategy to maintain the mental image. And deaf signers had enhanced abilities to resist the interference of eye movements in the situation of fewer distractors. In sum, these findings suggested that deaf signers had enhanced mental image processing.

Keywords: deaf signers, image maintain, mental image, visual search

Procedia PDF Downloads 154
3143 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 73
3142 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus

Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti

Abstract:

Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.

Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel

Procedia PDF Downloads 192
3141 Spreading Japan's National Image through China during the Era of Mass Tourism: The Japan National Tourism Organization’s Use of Sina Weibo

Authors: Abigail Qian Zhou

Abstract:

Since China has entered an era of mass tourism, there has been a fundamental change in the way Chinese people approach and perceive the image of other countries. With the advent of the new media era, social networking sites such as Sina Weibo have become a tool for many foreign governmental organizations to spread and promote their national image. Among them, the Japan National Tourism Organization (JNTO) was one of the first foreign official tourism agencies to register with Sina Weibo and actively implement communication activities. Due to historical and political reasons, cognition of Japan's national image by the Chinese has always been complicated and contradictory. However, since 2015, China has become the largest source of tourists visiting Japan. This clearly indicates that the broadening of Japan's national image in China has been effective and has value worthy of reference in promoting a positive Chinese perception of Japan and encouraging Japanese tourism. Within this context and using the method of content analysis in media studies through content mining software, this study analyzed how JNTO’s Sina Weibo accounts have constructed and spread Japan's national image. This study also summarized the characteristics of its content and form, and finally revealed the strategy of JNTO in building its international image. The findings of this study not only add a tourism-based perspective to traditional national image communications research, but also provide some reference for the effective international dissemination of national image in the future.

Keywords: national image, international communication, tourism, Japan, China

Procedia PDF Downloads 126
3140 Perceived and Projected Images of Algeria: A Comparison Study

Authors: Nour-Elhouda Lecheheb

Abstract:

Destination image is one of the main factors that influence potential visitors' decision choice. This study aims to explore the pre-visit perception of prior British tourists and compare them to the actual projected images of the Algerian tourism suppliers. Semi-structured interviews are conducted with both prior British tourists to Algeria and the Algerian tourism suppliers in 2019. The findings of this study suggest how the Algerian tourism suppliers might benefit from understanding the perceived image of prior tourists to match tourists' expectations and better plan their projected images.

Keywords: Algeria, destination choice, destination image, perceived image, projected image

Procedia PDF Downloads 165
3139 Blind Super-Resolution Reconstruction Based on PSF Estimation

Authors: Osama A. Omer, Amal Hamed

Abstract:

Successful blind image Super-Resolution algorithms require the exact estimation of the Point Spread Function (PSF). In the absence of any prior information about the imagery system and the true image; this estimation is normally done by trial and error experimentation until an acceptable restored image quality is obtained. Multi-frame blind Super-Resolution algorithms often have disadvantages of slow convergence and sensitiveness to complex noises. This paper presents a Super-Resolution image reconstruction algorithm based on estimation of the PSF that yields the optimum restored image quality. The estimation of PSF is performed by the knife-edge method and it is implemented by measuring spreading of the edges in the reproduced HR image itself during the reconstruction process. The proposed image reconstruction approach is using L1 norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. A series of experiment results show that the proposed method can outperform other previous work robustly and efficiently.

Keywords: blind, PSF, super-resolution, knife-edge, blurring, bilateral, L1 norm

Procedia PDF Downloads 363
3138 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 151
3137 New Features for Copy-Move Image Forgery Detection

Authors: Michael Zimba

Abstract:

A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.

Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery

Procedia PDF Downloads 542
3136 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)

Authors: Marziehossadat Moezzi

Abstract:

In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.

Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index

Procedia PDF Downloads 196
3135 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction

Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: computed tomography, computed laminography, compressive sending, low-dose

Procedia PDF Downloads 463
3134 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 317
3133 Analyzing the Emergence of Conscious Phenomena by the Process-Based Metaphysics

Authors: Chia-Lin Tu

Abstract:

Towards the end of the 20th century, a reductive picture has dominated in philosophy of science and philosophy of mind. Reductive physicalism claims that all entities and properties in this world are eventually able to be reduced to the physical level. It means that all phenomena in the world are able to be explained by laws of physics. However, quantum physics provides another picture. It says that the world is undergoing change and the energy of change is, in fact, the most important part to constitute world phenomena. Quantum physics provides us another point of view to reconsider the reality of the world. Throughout the history of philosophy of mind, reductive physicalism tries to reduce the conscious phenomena to physical particles as well, meaning that the reality of consciousness is composed by physical particles. However, reductive physicalism is unable to explain conscious phenomena and mind-body causation. Conscious phenomena, e.g., qualia, is not composed by physical particles. The current popular theory for consciousness is emergentism. Emergentism is an ambiguous concept which has not had clear idea of how conscious phenomena are emerged by physical particles. In order to understand the emergence of conscious phenomena, it seems that quantum physics is an appropriate analogy. Quantum physics claims that physical particles and processes together construct the most fundamental field of world phenomena, and thus all natural processes, i.e., wave functions, have occurred within. The traditional space-time description of classical physics is overtaken by the wave-function story. If this methodology of quantum physics works well to explain world phenomena, then it is not necessary to describe the world by the idea of physical particles like classical physics did. Conscious phenomena are one kind of world phenomena. Scientists and philosophers have tried to explain the reality of them, but it has not come out any conclusion. Quantum physics tells us that the fundamental field of the natural world is processed metaphysics. The emergence of conscious phenomena is only possible within this process metaphysics and has clearly occurred. By the framework of quantum physics, we are able to take emergence more seriously, and thus we can account for such emergent phenomena as consciousness. By questioning the particle-mechanistic concept of the world, the new metaphysics offers an opportunity to reconsider the reality of conscious phenomena.

Keywords: quantum physics, reduction, emergence, qualia

Procedia PDF Downloads 161
3132 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 103
3131 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 130
3130 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 110
3129 Digital Retinal Images: Background and Damaged Areas Segmentation

Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager

Abstract:

Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.

Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation

Procedia PDF Downloads 399
3128 Comparison of Two Theories for the Critical Laser Radius in Thermal Quantum Plasma

Authors: Somaye Zare

Abstract:

The critical beam radius is a significant factor that predicts the behavior of the laser beam in the plasma, so if the laser beam radius is adequately greater in comparison to it, the beam will experience stable focusing on the plasma; otherwise, the beam will diverge after entering into the plasma. In this work, considering the paraxial approximation and moment theories, the localization of a relativistic laser beam in thermal quantum plasma is investigated. Using the dielectric function obtained in the quantum hydrodynamic model, the mathematical equation for the laser beam width parameter is attained and solved numerically by the fourth-order Runge-Kutta method. The results demonstrate that the stouter focusing effect is occurred in the moment theory compared to the paraxial approximation. Besides, similar to the two theories, with increasing Fermi temperature, plasma density, and laser intensity, the oscillation rate of the beam width parameter growths and focusing length reduces which means improving the focusing effect. Furthermore, it is understood that behaviors of the critical laser radius are different in the two theories, in the paraxial approximation, the critical radius after a minimum value is enhanced with increasing laser intensity, but in the moment theory, with increasing laser intensity, the critical radius decreases until it becomes independent of the laser intensity.

Keywords: laser localization, quantum plasma, paraxial approximation, moment theory, quantum hydrodynamic model

Procedia PDF Downloads 70