Search results for: information seeking models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16982

Search results for: information seeking models

16682 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems

Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos

Abstract:

As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.

Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model

Procedia PDF Downloads 158
16681 The Effects of Consumer Inertia and Emotions on New Technology Acceptance

Authors: Chyi Jaw

Abstract:

Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.

Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity

Procedia PDF Downloads 296
16680 Linking Business Process Models and System Models Based on Business Process Modelling

Authors: Faisal A. Aburub

Abstract:

Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.

Keywords: business process modelling, system models, role activity diagrams, sequence diagrams

Procedia PDF Downloads 384
16679 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models

Authors: Ozan Kahraman, Hao Feng

Abstract:

Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.

Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7

Procedia PDF Downloads 365
16678 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 38
16677 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 250
16676 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 236
16675 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
16674 Mental Health Status among the Transgender Community: A Study of Mumbai

Authors: Mithlesh Chourase

Abstract:

Health of the transgender is as important as any other population sub-groups. However, little is known about the issues of mental health problems and health seeking behaviour of transgender in India. This paper examines the depression, stigma problem and suicidality (risk of suicide) among the transgender people in Mumbai city. The study used the primary survey data conducted in Mumbai city among the transgender community with a total sample of 120 among the transgender. Both qualitative and quantitative data was collected on demographic and socio-economic characteristic, general health and sexual health problems, mental health and health seeking behaviour among transgender. The quantitative results revealed that among the transgender, the prevalence of depression was very high. In this community 58.3% and 45.8 % of the transgender were suffered from depression and stigma problem respectively. On the other hand 42% and 48% of the transgender attempted suicide and experienced discrimination in the society. The qualitative results also revealed that the transgender were suffered from physical violence especially due to being a transgender, stressed due to being a transgender, experienced discrimination everywhere, experienced sexual health problems especially HIV, partner problem etc. As a result the prevalence of depression, self-harm attempt and suicidal attempt was common among this community.

Keywords: transgender, depression, Mumbai, mental health

Procedia PDF Downloads 526
16673 Compromising Relevance for Elegance: A Danger of Dominant Growth Models for Backward Economies

Authors: Givi Kupatadze

Abstract:

Backward economies are facing a challenge of achieving sustainable high economic growth rate. Dominant growth models represent a roadmap in framing economic development strategy. This paper examines a relevance of the dominant growth models for backward economies. Cobb-Douglas production function, the Harrod-Domar model of economic growth, the Solow growth model and general formula of gross domestic product are examined to undertake a comprehensive study of the dominant growth models. Deductive research method allows to uncover major weaknesses of the dominant growth models and to come up with practical implications for economic development strategy. The key finding of the paper shows, contrary to what used to be taught by textbooks of economics, that constant returns to scale property of the dominant growth models are a mere coincidence and its generalization over space and time can be regarded as one of the most unfortunate mistakes in the whole field of political economy. The major suggestion of the paper for backward economies is that understanding and considering taxonomy of economic activities based on increasing and diminishing returns to scale represent a cornerstone of successful economic development strategy.

Keywords: backward economies, constant returns to scale, dominant growth models, taxonomy of economic activities

Procedia PDF Downloads 375
16672 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 82
16671 On Bianchi Type Cosmological Models in Lyra’s Geometry

Authors: R. K. Dubey

Abstract:

Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.

Keywords: Bianchi type-I cosmological model, variable gravitational coupling, cosmological constant term, Lyra's model

Procedia PDF Downloads 354
16670 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
16669 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 171
16668 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
16667 Models of Innovation Processes and Their Evolution: A Literature Review

Authors: Maier Dorin, Maier Andreea

Abstract:

Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.

Keywords: innovation, innovation process, business success, models of innovation

Procedia PDF Downloads 401
16666 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models

Authors: Tejush Badal, Sanaa Alwidian

Abstract:

Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.

Keywords: analysis, class diagram, model family, unified modeling language, union model

Procedia PDF Downloads 74
16665 Volatility Model with Markov Regime Switching to Forecast Baht/USD

Authors: Nop Sopipan

Abstract:

In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.

Keywords: volatility, Markov Regime Switching, forecasting, Baht/USD

Procedia PDF Downloads 302
16664 Attitude of Youth Farmers to Climate Change Adaptation and Mitigation in Benue State, Nigeria

Authors: Cynthia E. Nwobodo, A. E. Agwu

Abstract:

The study was carried out in Benue State, Nigeria. Multi-stage sampling technique was used to select 120 respondents from two agricultural zones in the State. Data was collected using interview schedule. Descriptive statistics was used in data analysis. Findings showed that youth farmers in the area had positive attitude to climate change adaptation and mitigation as shown by their response to a set of positive and negative statement including: the youth are very important stakeholders in climate change issues (M= 2.91), youths should be encouraged to be climate change conscious (2.90), everybody should be involved in planting trees not just the government (M= 2.89), I will be glad to participate in climate change seminars (M= 2.89) among others. Findings on information seeking behavior indicate that majority (80.8 %) of the respondents sought climate change information from radio at an average of 19.78 times per month, 53.3 % sought from friends and neighbours at an average of 12.55 times per month and 42.5 % sought from family members at an average of 12.55 times per month among others. It was recommended that Youth farmers should be made important stakeholders in climate change policies and programmes since they have a very positive attitude to climate change adaptation and mitigation.

Keywords: adaptation, mitigation, attitude, climate change, youth farmers

Procedia PDF Downloads 648
16663 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)

Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan

Abstract:

Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.

Keywords: qorveh plain, groundwater level, ARMA, PARMA

Procedia PDF Downloads 286
16662 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 289
16661 Human Action Recognition Using Wavelets of Derived Beta Distributions

Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel

Abstract:

In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.

Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet

Procedia PDF Downloads 411
16660 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 251
16659 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143
16658 Use of Cyber-Physical Devices for the Implementation of Virtual and Augmented Realities in Bridge Construction

Authors: Muhammmad Fawad

Abstract:

The bridge construction industry has been revolutionized by the applications of Virtual Reality (VR) and Augmented Reality (AR). In this article, the author has focused on the field applications of digital technologies in structural, especially in bridge engineering. This research analyzed the use of VR/AR for the assessment of bridge concepts. For this purpose, the author has used Cyber-Physical Devices, i.e., Oculus Quest (OQ) for the implementation of VR, Trimble Microsoft HoloLens (THL), and Trimble Site Vision (TSV) for the implementation of AR/MR by visualizing the models of bridge planned to be constructed in Poland. The visualization of the models in Extended Reality (XR) is based on the development of BIM models of the bridge, which are further uploaded to the platforms required to implement these models in XR. This research helped to implement the models in MR so a bridge with a 1:1 scale at the exact location was placed, and authorities were presented with the possibility to visualize the exact scale and location of the bridge before its construction.

Keywords: augmented reality, virtual reality, HoloLens, BIM, bridges

Procedia PDF Downloads 122
16657 Public Spending and Economic Growth: An Empirical Analysis of Developed Countries

Authors: Bernur Acikgoz

Abstract:

The purpose of this paper is to investigate the effects of public spending on economic growth and examine the sources of economic growth in developed countries since the 1990s. This paper analyses whether public spending effect on economic growth based on Cobb-Douglas Production Function with the two econometric models with Autoregressive Distributed Lag (ARDL) and Dynamic Fixed Effect (DFE) for 21 developed countries (high-income OECD countries), over the period 1990-2013. Our models results are parallel to each other and the models support that public spending has an important role for economic growth. This result is accurate with theories and previous empirical studies.

Keywords: public spending, economic growth, panel data, ARDL models

Procedia PDF Downloads 370
16656 A Study on Good Governance: Its Elements, Models, and Goals

Authors: Ehsan Daryadel, Hamid Shakeri

Abstract:

Good governance is considered as one of the necessary prerequisites for promotion of sustainable development programs in countries. Theoretical model of good governance is going to form the best methods for administration and management of subject country. The importance of maintaining the balance between the needs of present and future generation through sustainable development caused a change in method of management and providing service for citizens that is addressed as the most efficient and effective way of administration of countries. This method is based on democratic and equal-seeking sustainable development which is trying to affect all actors in this area and also be accountable to all citizens’ needs. Meanwhile, it should be noted that good governance is a prerequisite for sustainable development. In fact, good governance means impact of all actors on administration and management of the country for fulfilling public services, general needs of citizens and establishing a balance and harmony between needs of present and future generation. In the present study, efforts have been made to present concepts, definitions, purposes and indices of good governance with a descriptive-analytical method.

Keywords: accountability, efficiency and effectiveness, good governance, rule of law, transparency

Procedia PDF Downloads 303
16655 Characteristics of Business Models of Industrial-Internet-of-Things Platforms

Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen

Abstract:

The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.

Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study

Procedia PDF Downloads 243
16654 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web mapping, indicator of drought

Procedia PDF Downloads 494
16653 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 246