Search results for: complex non-linear partial differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9820

Search results for: complex non-linear partial differential equations

9520 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA_II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: nonlinear dynamic model, polymer electrolyte membrane fuel cells, feedback linearization, optimal control, NSGA_II

Procedia PDF Downloads 518
9519 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 400
9518 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage

Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour

Abstract:

This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.

Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage

Procedia PDF Downloads 458
9517 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 332
9516 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 409
9515 Lie Symmetry of a Nonlinear System Characterizing Endemic Malaria

Authors: Maba Boniface Matadi

Abstract:

This paper analyses the model of Malaria endemic from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the nonlinear model. Furthermore, corresponding determining equations were constructed, and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Malaria model.

Keywords: group theory, lie symmetry, invariant solutions, malaria

Procedia PDF Downloads 110
9514 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 247
9513 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters

Authors: Mrinal Jana, Geetanjali Panda

Abstract:

In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.

Keywords: fractional programming, interval valued function, interval inequalities, partial order relation

Procedia PDF Downloads 520
9512 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 225
9511 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 170
9510 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation

Procedia PDF Downloads 388
9509 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

Authors: H. Ozbasaran

Abstract:

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Keywords: cantilever, IPN, IPE, lateral torsional buckling

Procedia PDF Downloads 541
9508 Multistage Adomian Decomposition Method for Solving Linear and Non-Linear Stiff System of Ordinary Differential Equations

Authors: M. S. H. Chowdhury, Ishak Hashim

Abstract:

In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the classical Adomian decomposition method (ADM) and the multi-stage Adomian decomposition method (MADM). The MADM is a technique adapted from the standard Adomian decomposition method (ADM) where standard ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The MADM is tested for several examples. Comparisons with an explicit Runge-Kutta-type method (RK) and the classical ADM demonstrate the limitations of ADM and promising capability of the MADM for solving stiff initial value problems (IVPs).

Keywords: stiff system of ODEs, Runge-Kutta Type Method, Adomian decomposition method, Multistage ADM

Procedia PDF Downloads 437
9507 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 317
9506 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 289
9505 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 148
9504 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 78
9503 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: finite volume, lunchers, nozzles, shock wave

Procedia PDF Downloads 289
9502 Study on the Central Differencing Scheme with the Staggered Version (STG) for Solving the Hyperbolic Partial Differential Equations

Authors: Narumol Chintaganun

Abstract:

In this paper we present the second-order central differencing scheme with the staggered version (STG) for solving the advection equation and Burger's equation. This scheme based on staggered evolution of the re-constructed cell averages. This scheme results in the second-order central differencing scheme, an extension along the lines of the first-order central scheme of Lax-Friedrichs (LxF) scheme. All numerical simulations presented in this paper are obtained by finite difference method (FDM) and STG. Numerical results are shown that the STG gives very good results and higher accuracy.

Keywords: central differencing scheme, STG, advection equation, burgers equation

Procedia PDF Downloads 558
9501 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 68
9500 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint

Authors: Mahmoud Lot

Abstract:

In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.

Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method

Procedia PDF Downloads 152
9499 Nonlinear Model Predictive Control for Biodiesel Production via Transesterification

Authors: Juliette Harper, Yu Yang

Abstract:

Biofuels have gained significant attention recently due to the new regulations and agreements regarding fossil fuels and greenhouse gases being made by countries around the globe. One of the most common types of biofuels is biodiesel, primarily made via the transesterification reaction. We model this nonlinear process in MATLAB using the standard kinetic equations. Then, a nonlinear Model predictive control (NMPC) was developed to regulate this process due to its capability to handle process constraints. The feeding flow uncertainty and kinetic disturbances are further incorporated in the model to capture the real-world operating conditions. The simulation results will show that the proposed NMPC can guarantee the final composition of fatty acid methyl esters (FAME) above the target threshold with a high chance by adjusting the process temperature and flowrate. This research will allow further understanding of NMPC under uncertainties and how to design the computational strategy for larger process with more variables.

Keywords: NMPC, biodiesel, uncertainties, nonlinear, MATLAB

Procedia PDF Downloads 97
9498 Thermal Radiation and Chemical Reaction Effects on MHD Casson Fluid Past a Permeable Stretching Sheet in a Porous Medium

Authors: Y. Sunita Rani, Y. Hari Krishna, M. V. Ramana Murthy, K. Sudhaker Reddy

Abstract:

This article studied effects of radiation and chemical reaction on MHD casson fluoid flow past a Permeable Stretching Sheet in a Porous Medium. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like Runge- Kutta – Fehlberg shooting technique method. The effects of various governing parameters, on the velocity, temperature and concentration are displayed through graphs and discussed numerically.

Keywords: MHD, Casson fluid, porous medium, permeable stretching sheet

Procedia PDF Downloads 128
9497 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formula

Keywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula

Procedia PDF Downloads 322
9496 Lyapunov Functions for Extended Ross Model

Authors: Rahele Mosleh

Abstract:

This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.

Keywords: global stability, invariant solutions, Lyapunov function, stationary points

Procedia PDF Downloads 165
9495 A New Nonlinear State-Space Model and Its Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.

Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator

Procedia PDF Downloads 691
9494 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
9493 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation

Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot

Abstract:

The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.

Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution

Procedia PDF Downloads 124
9492 Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model.

Keywords: differential cross-section, backscattering coefficient, Rutherford cross-section, Vicanek and Urbassek theory

Procedia PDF Downloads 565
9491 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 143