Search results for: Tauc’s equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1994

Search results for: Tauc’s equation

1694 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 104
1693 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 465
1692 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty

Authors: Dalvinder Kaur Mangal

Abstract:

For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.

Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise

Procedia PDF Downloads 497
1691 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling

Authors: Bavneet Kaur Sidhu, Manoj Tiwari

Abstract:

Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.

Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling

Procedia PDF Downloads 137
1690 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 202
1689 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 524
1688 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 126
1687 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations

Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran

Abstract:

In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.

Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions

Procedia PDF Downloads 433
1686 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture

Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh

Abstract:

The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.

Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation

Procedia PDF Downloads 110
1685 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform

Procedia PDF Downloads 345
1684 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion

Authors: Francys Souza, Alberto Ohashi, Dorival Leao

Abstract:

We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.

Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation

Procedia PDF Downloads 189
1683 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio

Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros

Abstract:

Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.

Keywords: impact force, dissipated energy, kinetic energy loss, damping relation

Procedia PDF Downloads 553
1682 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses

Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn

Abstract:

The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.

Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis

Procedia PDF Downloads 392
1681 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method

Procedia PDF Downloads 239
1680 The Mediatory Role of Innovation in the Link between Social and Financial Performance

Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun

Abstract:

In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.

Keywords: ESG, financial performance, innovation, social performance, structural equation modeling

Procedia PDF Downloads 104
1679 Interest Rate Prediction with Taylor Rule

Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou

Abstract:

This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.

Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).

Procedia PDF Downloads 527
1678 Refractive Index, Excess Molar Volume and Viscometric Study of Binary Liquid Mixture of Morpholine with Cumene at 298.15 K, 303.15 K, and 308.15 K

Authors: B. K. Gill, Himani Sharma, V. K. Rattan

Abstract:

Experimental data of refractive index, excess molar volume and viscosity of binary mixture of morpholine with cumene over the whole composition range at 298.15 K, 303.15 K, 308.15 K and normal atmospheric pressure have been measured. The experimental data were used to compute the density, deviation in molar refraction, deviation in viscosity and excess Gibbs free energy of activation as a function of composition. The experimental viscosity data have been correlated with empirical equations like Grunberg- Nissan, Herric correlation and three body McAllister’s equation. The excess thermodynamic properties were fitted to Redlich-Kister polynomial equation. The variation of these properties with composition and temperature of the binary mixtures are discussed in terms of intermolecular interactions.

Keywords: cumene, excess Gibbs free energy, excess molar volume, morpholine

Procedia PDF Downloads 330
1677 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 350
1676 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 440
1675 A Study of Flow near the Leading Edge of a Flat Plate by New Idea in Analytical Methods

Authors: M. R. Akbari, S. Akbari, L. Abdollahpour

Abstract:

The present paper is concerned with calculating the 2-dimensional velocity profile of a viscous flow for an incompressible fluid along the leading edge of a flat plate by using the continuity and motion equations with a simple and innovative approach. A Comparison between Numerical method and AGM has been made and the results have been revealed that AGM is very accurate and easy and can be applied for a wide variety of nonlinear problems. It is notable that most of the differential equations can be solved in this approach which in the other approaches they do not have this capability. Moreover, there are some valuable benefits in this method of solving differential equations, for instance: Without any dimensionless procedure, we can solve many differential equation(s), that is, differential equations are directly solvable by this method. In addition, it is not necessary to convert variables into new ones. According to the afore-mentioned expressions which will be proved in this literature, the process of solving nonlinear differential equation(s) will be very simple and convenient in contrast to the other approaches.

Keywords: leading edge, new idea, flat plate, incompressible fluid

Procedia PDF Downloads 287
1674 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 690
1673 Generation Transcritical Flow Influenced by Dissipation over a Hole

Authors: Mohammed Daher Albalwi

Abstract:

The transcritical flow of a stratified fluid over an obstacle for negative forcing amplitude (hole) that generation upstream and downstream, connected by an unsteady solution, is examined. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries–Burgers framework. This is done by including the influence of the viscosity of the fluid beyond the Korteweg–de Vries approximation. The results show that the influence of viscosity is crucial in determining various wave properties, including the amplitudes of solitary waves in the upstream and downstream directions, as well as the widths of the bores. We focused here on weak damping, and the results are presented for transcritical, supercritical, and subcritical flows. In general, the outcomes are not qualitatively similar to those from the forced Korteweg-de–Vries equation when the value of the viscous is small, interesting differences emerge as the magnitude of the value of viscous increases.

Keywords: Korteweg–de Vries–Burgers equation, soliton, transcritical flow, viscous flow

Procedia PDF Downloads 52
1672 Generation Solitary Waves for Viscous Flow over a Hole

Authors: Mohammed Daher Albalwi

Abstract:

This study investigates the transcritical flow of a stratified fluid over topography under negative forcing amplitude (hole), which generates upstream and downstream flows connected by an unsteady solution. This phenomenon is formulated by a forced Korteweg-de Vries–Burgers model, considering weak nonlinearity and weak dispersion by accounting for the fluid’s viscosity beyond the Korteweg–de Vries approximation. The findings highlight that viscosity significantly affects various wave characteristics, such as the amplitudes of solitary waves both upstream and downstream, as well as the widths of the bores. We focused here on weak damping, and the results apply to transcritical, supercritical, and subcritical flows. Generally, when the viscosity is low, the results differ qualitatively from those predicted by the forced Korteweg-de Vries equation, with notable variations arising as viscosity increases.

Keywords: Korteweg-de Vries-Burgers’ equation, soliton, viscous flow, transcritical (resonant) flow, solitary waves

Procedia PDF Downloads 5
1671 Factors Influencing the Resistance of the Purchase of Organic Food and Market Education Process in Indonesia

Authors: Fety Nurlia Muzayanah, Arif Imam Suroso, Mukhamad Najib

Abstract:

The market share of organic food in Indonesia just reaches 0.5-2 percents from the entire of agricultural products. The aim of this research is to analyze the relation of gender, work, age and final education toward the buying interest of organic food, to identify the factors influencing the resistance of the purchase of organic food, and to identify the market education process. The analysis result of Structural Equation Modeling (SEM) shows the factors causing the resistance of the purchase of organic food are the negative attitude toward organic food, the lack of affordable in range for organic food product and the lack of awareness toward organic food, while the subjective norms have no significant effect toward the buying interest. The market education process which can be done is the education about the use of the health of organic food, the organic certification and the economic value.

Keywords: market education, organic food, consumer behavior, structural equation modeling

Procedia PDF Downloads 615
1670 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 51
1669 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications

Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe

Abstract:

This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.

Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation

Procedia PDF Downloads 105
1668 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 377
1667 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle

Procedia PDF Downloads 549
1666 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: bio-heat, boussinesq, conduction, convection, eye

Procedia PDF Downloads 345
1665 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: gyro, gimbal, lagrange equation, spherical robots

Procedia PDF Downloads 316