Search results for: Bayes’ rule
612 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 124611 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 100610 Brazilian Public Security: Governability and Constitutional Change
Authors: Gabriel Dolabella, Henrique Rangel, Stella Araújo, Carlos Bolonha, Igor de Lazari
Abstract:
Public security is a common subject on the Brazilian political agenda. The seventh largest economy in the world has high crime and insecurity rates. Specialists try to explain this social picture based on poverty, inequality or public policies addressed to drug trafficking. This excerpt approaches State measures to handle that picture. Therefore, the public security - law enforcement institutions - is at the core of this paper, particularly the relationship among federal and state law enforcement agencies, mainly ruled by a system of urgency. The problems are informal changes on law enforcement management and public opinion collaboration to these changes. Whenever there were huge international events, Brazilian armed forces occupied streets to assure law enforcement - ensuring the order. This logic, considered in the long time, could impact the federal structure of the country. The post-madisonian theorists verify that urgency is often associated to delegation of powers, which is true for Brazilian law enforcement, but here there is a different delegation: States continuously delegate law enforcement powers to the federal government throughout the use of Armed Forces. Therefore, the hypothesis is: Brazil is under a political process of federalization of public security. The political framework addressed here can be explained by the disrespect of legal constraints and the failure of rule of law theoretical models. The methodology of analysis is based on general criteria. Temporally, this study investigates events from 2003, when discussions about the disarmament statute begun. Geographically, this study is limited to Brazilian borders. Materially, the analysis result from the observation of legal resources and political resources (pronouncements of government officials). The main parameters are based on post-madisonianism and federalization of public security can be assessed through credibility and popularity that allow evaluation of this political process of constitutional change. The objective is to demonstrate how the Military Forces are used in public security, not as a random fact or an isolated political event, in order to understand the political motivations and effects that stem from that use from an institutional perspective.Keywords: public security, governability, rule of law, federalism
Procedia PDF Downloads 678609 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 155608 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule
Authors: Yuanxiaoyue Yang
Abstract:
Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.Keywords: air pollution, cap-and-trade, emissions trading, environmental justice
Procedia PDF Downloads 152607 Transformation of Antitrust Policy against Collusion in Russia and Transition Economies
Authors: Andrey Makarov
Abstract:
This article will focus on the development of antitrust policy in transition economies in the context of preventing explicit and tacit collusion. Experience of BRICS, CIS (Ukraine, Kazakhstan) and CEE countries (Bulgaria, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia, Czech Republic, Estonia) in the creation of antitrust institutions was analyzed, including both legislation and enforcement practice. Most of these countries in the early 90th were forced to develop completely new legislation in the field of protection of competition and it is important to compare different ways of building antitrust institutions and policy results. The article proposes a special approach to evaluation of preventing collusion mechanisms. This approach takes into account such enforcement problems as: classification problems (tacit vs explicit collusion, vertical vs horizontal agreements), flexibility of prohibitions (the balance between “per se” vs “rule of reason” approaches de jure and in practice), design of sanctions, private enforcement challenge, leniency program mechanisms, the role of antitrust authorities etc. The analysis is conducted using both official data, published by competition authorities, and expert assessments. The paper will show how the integration process within the EU predetermined some aspects of the development of antitrust policy in CEE countries, including the trend of the use of "rule of reason" approach. Simultaneously was analyzed the experience of CEE countries in special mechanisms of government intervention. CIS countries in the development of antitrust policy followed more or less original ways, without such a great impact from the European Union, more attention will be given to Russian experience in this field, including the analysis of judicial decisions in antitrust cases. Main problems and challenges for transition economies in this field will be shown, including: Legal uncertainty problem; Problem of rigidity of prohibitions; Enforcement priorities of the regulator; Interaction of administrative and criminal law, limited effectiveness of criminal sanctions in the antitrust field; The effectiveness of leniency program design; Private enforcement challenge.Keywords: collusion, antitrust policy, leniency program, transition economies, Russia, CEE
Procedia PDF Downloads 446606 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 241605 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 521604 The Protection of Assets in the Crisis Management Processes
Authors: Jiri Barta
Abstract:
This paper deals with the prevention and management of emergencies. It focuses on the protection of assets of the critical infrastructure entities that are important to preventing, preparing for and management of emergencies and crisis situations. The paper defines assets and specifies their use and place in the process of crisis management and planning. Critical assets that are protected from the negative effects of emergency or crisis situation we can use in crisis management and response. This basic rule applies mainly to the substantial assets used in the protection of critical infrastructure processes.Keywords: asset, continuity, critical infrastructure, crisis management process
Procedia PDF Downloads 515603 Impact of Implementation of Right to Education in Pakistan
Authors: Rukhsar Ahmed, Jawed Aziz Masudi
Abstract:
In the present study, an attempt has been made about the right to an education in Pakistan. The research is the focus in respect of International Law Article 26 of the Universal Declaration of Human Rights. The main motivation behind getting great training is, as a rule, decent resident and afterward being effective in close to home and expert life. We are fragmented without decent instruction since training makes us the right mastermind and right chief. In such a focused world, instruction has turned into a need for people after sustenance, dress and haven. It can give answers for all issues; it advances great propensities and mindfulness about defilement, fear-mongering, and other social issues among us.Keywords: education, right to education, human right, universal declaration, law
Procedia PDF Downloads 164602 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 128601 Displaced People in International Marriage Law: Choice of Law and the 1951 Convention Relating to the Status of Refugees
Authors: Rorick Daniel Tovar Galvan
Abstract:
The 1951 Convention relating to the status of refugees contains a conflict of law rule for the determination of the applicable law to marriage. The wording of this provision leaves much to be desired as it uses the domicile and the residence of the spouses as single main and subsidiary connecting factors. In cases where couples live in different countries, the law applicable to the case is unclear. The same problem arises when refugees are married to individuals outside of the convention’s scope of application. Different interpretations of this legal provision have arisen to solve this problem. Courts in a number of European countries apply the so-called modification doctrine: states should apply their domestic private international rules in all cases involving refugees. Courts shall, however, replace the national connecting factor by the domicile or residence in situations where nationality is used to determine the applicable law. The internal conflict of law rule will then be slightly modified in order to be applied according to the convention. However, this approach excludes these people from using their national law if they so desire. As nationality is, in all cases, replaced by domicile or residence as connecting factor, refugees are automatically deprived of the possibility to choose this law in jurisdictions that include the party autonomy in international marriage law. This contribution aims to shed light on the international legal framework applicable to marriages celebrated by refugees and the unnecessary restrictions to the exercise of the party autonomy these individuals are subjected to. The interest is motivated by the increasing number of displaced people, the significant number of states party to the Refugee Convention – approximately 150 – and the fact that more and more countries allow choice of law agreements in marriage law. Based on a study of German, Spanish and Swiss case law, the current practices in Europe, as well as some incoherencies derived from the current interpretation of the convention, will be discussed. The main objective is showing that there is neither an economic nor a legal basis to deny refugees the right to choose the law of their country of origin in those jurisdictions providing for this possibility to other foreigners. Quite the contrary, after analyzing other provisions contained in the conventions, this restriction would mean a contravention of other obligations included in the text.Keywords: choice of law, conflict of laws, international marriage law, refugees
Procedia PDF Downloads 146600 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 303599 Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution
Authors: Nelvin Joseph, K. Krishna Milan Rao, Praveen Dwarakanath
Abstract:
The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world.Keywords: augmented reality, artificial neural networks, mobile application, human computer interaction, community engine
Procedia PDF Downloads 333598 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 110597 Improve of Power Quality in Electrical Network Using STATCOM
Authors: A. R. Alesaadi
Abstract:
Flexible AC transmission system (FACTS) devices have an important rule on expended electrical transmission networks. These devices can provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability. In this paper the effect of these devices on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the reliability of power networks and power quality in electrical networks, significantly.Keywords: FACTS devices, power networks, power quality, STATCOM
Procedia PDF Downloads 669596 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations
Authors: Payel Das, Gnaneshwar Nelakanti
Abstract:
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence
Procedia PDF Downloads 471595 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 139594 Dynamical Systems and Fibonacci Numbers
Authors: Vandana N. Purav
Abstract:
The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics.Keywords: dynamical systems, Fibonacci numbers, Newtonian mechanics, discrete dynamical system
Procedia PDF Downloads 493593 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Authors: Sanjay Rathee, Arti Kashyap
Abstract:
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining
Procedia PDF Downloads 297592 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 98591 Equivalences and Contrasts in the Morphological Formation of Echo Words in Two Indo-Aryan Languages: Bengali and Odia
Authors: Subhanan Mandal, Bidisha Hore
Abstract:
The linguistic process whereby repetition of all or part of the base word with or without internal change before or after the base itself takes place is regarded as reduplication. The reduplicated morphological construction annotates with itself a new grammatical category and meaning. Reduplication is a very frequent and abundant phenomenon in the eastern Indian languages from the states of West Bengal and Odisha, i.e. Bengali and Odia respectively. Bengali, an Indo-Aryan language and a part of the Indo-European language family is one of the largest spoken languages in India and is the national language of Bangladesh. Despite this classification, Bengali has certain influences in terms of vocabulary and grammar due to its geographical proximity to Tibeto-Burman and Austro-Asiatic language speaking communities. Bengali along with Odia belonged to a single linguistic branch. But with time and gradual linguistic changes due to various factors, Odia was the first to break away and develop as a separate distinct language. However, less of contrasts and more of similarities still exist among these languages along the line of linguistics, leaving apart the script. This paper deals with the procedure of echo word formations in Bengali and Odia. The morphological research of the two languages concerning the field of reduplication reveals several linguistic processes. The revelation is based on the information elicited from native language speakers and also on the analysis of echo words found in discourse and conversational patterns. For the purpose of partial reduplication analysis, prefixed class and suffixed class word formations are taken into consideration which show specific rule based changes. For example, in suffixed class categorization, both consonant and vowel alterations are found, following the rules: i) CVx à tVX, ii) CVCV à CVCi. Further classifications were also found on sentential studies of both languages which revealed complete reduplication complexities while forming echo words where the head word lose its original meaning. Complexities based on onomatopoetic/phonetic imitation of natural phenomena and not according to any rule-based occurrences were also found. Taking these aspects into consideration which are very prevalent in both the languages, inferences are drawn from the study which bring out many similarities in both the languages in this area in spite of branching away from each other several years ago.Keywords: consonant alteration, onomatopoetic, partial reduplication and complete reduplication, reduplication, vowel alteration
Procedia PDF Downloads 242590 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 258589 Mathematical and Fuzzy Logic in the Interpretation of the Quran
Authors: Morteza Khorrami
Abstract:
The logic as an intellectual infrastructure plays an essential role in the Islamic sciences. Hence, there are a few of the verses of the Holy Quran that their interpretation is not possible due to lack of proper logic. In many verses in the Quran, argument and the respondent has requested from the audience that shows the logic rule is in the Quran. The paper which use a descriptive and analytic method, tries to show the role of logic in understanding of the Quran reasoning methods and display some of Quranic statements with mathematical symbols and point that we can help these symbols for interesting and interpretation and answering to some questions and doubts. In this paper, this problem has been mentioned that the Quran did not use two-valued logic (Aristotelian) in all cases, but the fuzzy logic can also be searched in the Quran.Keywords: aristotelian logic, fuzzy logic, interpretation, Holy Quran
Procedia PDF Downloads 679588 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment
Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving
Abstract:
We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic
Procedia PDF Downloads 610587 Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment
Authors: Abbas Khosravi
Abstract:
This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations.Keywords: multi-agent systems, communication, Robocop, software engineering
Procedia PDF Downloads 40586 The Dark Side of the Fight against Organised Crime
Authors: Ana M. Prieto del Pino
Abstract:
As is well known, UN Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances (1988) was a landmark regarding the seizure of proceeds of crime. Depriving criminals of the profits from their activity became a priority at an international level in the fight against organised crime. Enabling confiscation of proceeds of illicit traffic in narcotic drugs and psychotropic substances, criminalising money laundering and confiscating the proceeds thereof are the three measures taken in order to achieve that purpose. The beginning of 21st century brought the declaration of war on corruption and on the illicit enjoyment of the profits thereof onto the international scene. According to the UN Convention against Transnational Organised Crime (2000), States Parties should adopt the necessary measures to enable the confiscation of proceeds of crime derived from offences (or property of equivalent value) and property, equipment and other instrumentalities used in offences covered by that Convention. The UN Convention against Corruption (2003) states asset recovery explicitly as a fundamental principle and sets forth measures aiming at the direct recovery of property through international cooperation in confiscation. Furthermore, European legislation has made many significant strides forward in less than twenty years concerning money laundering, confiscation, and asset recovery. Crime does not pay, let there be no doubt about it. Nevertheless, we must be very careful not to sing out of tune with individual rights and legal guarantees. On the one hand, innocent individuals and businesses must be protected, since they should not pay for the guilty ones’ faults. On the other hand, the rule of law must be preserved and not be tossed aside regarding those who have carried out criminal activities. An in-depth analysis of judicial decisions on money laundering and confiscation of proceeds of crime issued by European national courts and by the European Court of Human Rights in the last decade has been carried out from a human rights, legal guarantees and criminal law basic principles’ perspective. The undertaken study has revealed the violation of the right to property, of the proportionality principle legal and the infringement of basic principles of states’ domestic substantive and procedural criminal law systems. The most relevant ones have to do with the punishment of money laundering committed through negligence, non-conviction based confiscation and a too-far reaching interpretation of the notion of ‘proceeds of crime’. Almost everything in life has a bright and a dark side. Confiscation of criminal proceeds and asset recovery are not an exception to this rule.Keywords: confiscation, human rights, money laundering, organized crime
Procedia PDF Downloads 139585 A Hybrid Genetic Algorithm for Assembly Line Balancing In Automotive Sector
Authors: Qazi Salman Khalid, Muhammad Khalid, Shahid Maqsood
Abstract:
This paper presents a solution for optimizing the cycle time in an assembly line with human-robot collaboration and diverse operators. A genetic algorithm with tailored parameters is used to address the assembly line balancing problem in the automobile sector. A mathematical model is developed, depicting the problem. Currently, the firm runs on the largest candidate rule; however, it causes a lag in orders, which ultimately gets penalized. The results of the study show that the proposed GA is effective in providing efficient solutions and that the cycle time has significantly impacted productivity.Keywords: line balancing, cycle time, genetic algorithm, productivity
Procedia PDF Downloads 138584 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 636583 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 499